首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.  相似文献   

2.
3.
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit.  相似文献   

4.
5.
6.
7.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   

8.
Odorant-binding proteins (OBPs) are small abundant soluble proteins belonging to the lipocalin superfamily, which are thought to carry hydrophobic odorants through aqueous mucus towards olfactory receptors. Human variant hOBP-2A has been demonstrated to bind numerous odorants of different chemical classes with a higher affinity for aldehydes and fatty acids. Three lysyl residues of the binding pocket (Lys62, Lys82 and Lys112) have been suggested as candidates for playing such a role. Here, using site-directed mutagenesis and fluorescent probe displacements, we show that Lys112 is the major determinant for governing hOBP-2A specificity towards aldehydes and small carboxylic acids.  相似文献   

9.
蛋白质组研究中肽质量指纹谱鉴定方法的建立及应用   总被引:22,自引:0,他引:22  
建立了用肽质量指纹谱和数据库检索方法鉴定凝胶电泳分离蛋白南的方法。用标准蛋白质对胶上蛋白5质原位酶切制备肽谱的方法进行了讨论。分析了实际细胞蛋白质样品,获得双向电泳分离的人肺癌细胞蛋白质谱中三个蛋白质点的肽指纹谱。并通过数据7库检索分别鉴定为甘油醛-3-磷酸脱氢酶-2,测在蛋白羟基末端水解同工酶和丙糖磷酸异构酶。  相似文献   

10.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

11.
12.
The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection.  相似文献   

13.
14.
Oxygen stress: a regulator of apoptosis in yeast.   总被引:33,自引:0,他引:33       下载免费PDF全文
Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast.  相似文献   

15.
16.
Myo2p is an essential class V myosin in budding yeast with several identified functions in organelle trafficking and spindle orientation. The present study demonstrates that Myo2p is a component of a large RNA-containing complex (Myo2p-RNP) that is distinct from polysomes based on sedimentation analysis and lack of ribosomal subunits in the Myo2p-RNP. Microarray analysis of RNAs that coimmunoprecipitate with Myo2p revealed the presence of a large number of mRNAs in this complex. The Myo2p-RNA complex is in part composed of the RNA processing body (P-body) based on coprecipitation with P-body protein subunits and partial colocalization of Myo2p with P-bodies. P-body disassembly is delayed in the motor mutant, myo2-66, indicating that Myo2p may facilitate the release of mRNAs from the P-body.  相似文献   

17.
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive ‘toolbox’ available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrPSc. Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.  相似文献   

18.
19.
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.  相似文献   

20.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号