首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The interaction of the Rev protein from human immunodeficiency virus type 1 (HIV-1) with the nucleocytoplasmic mRNA-transport system was investigated. In gel-shift assay, the recombinant Rev protein used in this study selectively bound to the Rev-responsive element (RRE) region of HIV-1 env-specific RNA. Nitrocellulose-filter-binding studies and Northern/Western-blotting experiments revealed an association constant of approximately 1 x 10(10) M-1. The Rev protein also strongly bound to isolated nuclear envelopes from H9 cells, containing the poly(A)-binding site (= mRNA carrier) and the nucleoside triphosphatase (= NTPase), which are thought to be involved in nuclear export of poly(A)-rich mRNA. Binding of 125I-Rev to a 110-kDa nuclear-envelope protein, the putative mRNA carrier, could be demonstrated in in vitro experiments. Both efflux of cellular poly(A)-rich RNA, such as actin RNA [but not efflux of poly(A)-free RNA] from isolated nuclei and the nuclear-envelope NTPase activity were strongly inhibited by Rev protein. On the other hand, transport of viral env RNA, containing the Rev-responsive element, was increased in the presence of Rev. Studying the release of RNA from closed nuclear-envelope vesicles containing entrapped RNA, the action of Rev was found to occur at the level of translocation of RNA through the nuclear pore. Evidence is presented that Rev down-regulates the NTPase-driven transport of mRNA lacking the RRE, most likely via binding to the mRNA carrier within the envelope. In contrast to the efflux of RRE-free RNA, ATP-dependent efflux of RRE-containing RNA from resealed nuclear-envelope vesicles was found to be increased, if the RNA was entrapped in the vesicles together with Rev protein. In addition, it was found that phosphorylated Rev, which is transported together with RRE-containing RNA out of the vesicles, becomes dephosphorylated during transport. In the vesicle experiments it is demonstrated for the first time that a protein selectively channels a specific mRNA across the nuclear-envelope pore complex.  相似文献   

2.
Variability of mammalian liver nuclear-envelope preparations.   总被引:6,自引:4,他引:2       下载免费PDF全文
The composition, density and enzymic activities of sheep liver nuclear-envelope preparations were found to vary markedly according to the concentrations of nuclei during the lysis stage. The effect of nuclear concentration on the properties of the purified envelopes could not be attributed to bound Mg2+ or to other ions, and appeared to result from some component of the nucleus which was not eluted during lysis. The implications of these findings for studies on the nuclear envelope are discussed.  相似文献   

3.
The rate of energy-dependent nucleoside triphosphatase (NTPase)-mediated nucleocytoplasmic translocation of poly(A)-containing mRNA [poly(A)+mRNA] across the nuclear envelope is thought to be regulated by poly(A)-sensitive phosphorylation and dephosphorylation of nuclear-envelope protein. Studying the phosphorylation-related inhibition of the NTPase, we found that phosphorylation of one polypeptide of rat liver envelopes by endogenous NI- and NII-like protein kinase was particularly sensitive to poly(A). This polypeptide (106 kDa) was also phosphorylated by nuclear-envelope-bound Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C). Activation of kinase C by tumour-promoting phorbol esters resulted in inhibition of nuclear-envelope NTPase activity and in a concomitant decrease of mRNA (actin) efflux rate from isolated rat liver nuclei. Protein kinase C, but not nuclear envelope NI-like or NII-like protein kinase, was found to be solubilized from the envelope by Triton X-100, whereas the presumable poly(A)-binding site [the 106 kDa polypeptide, representing the putative carrier for poly(A)+mRNA transport] remained bound to this structure. RNA efflux from detergent-treated nuclei lost its susceptibility to phorbol esters. Addition of purified protein kinase C to these nuclei restored the effect of the tumour promoters. Protein kinase C was found to bind also to isolated rat liver nuclear matrices in the absence but not in the presence of ATP. The NII-like nuclear-envelope protein kinase co-purified together with the 106 kDa polypeptide which specifically binds to poly(A) in an ATP-labile linkage.  相似文献   

4.
A sensitive technique is described for the rapid identification of nuclear-envelope proteins. Mouse liver nuclei (purified on sucrose gradients) were iodinated with Na125I by the immobilized water-insoluble reagent Iodogen. Iodinated nuclei were digested with RNAase A and DNAase I and then salt-extracted to obtain labelled nuclear envelopes. Nuclear envelopes were characterized by morphological and biochemical criteria and by SDS/polyacrylamide-gel electrophoresis. In all, 13 polypeptides of molecular masses 145, 115, 98, 85, 75, 70, 65, 54, 50, 45, 40, 38 and 36 kDa were identified in the labelled nuclear envelopes. The labelled polypeptides were localized to the nuclear envelope by extraction of the envelope with Triton X-100 and different concentrations of salt. Iodination of intact nuclei was shown to be specific for the nuclear envelope by the absence of labelling of histones and cytoplasmic contaminants.  相似文献   

5.
The effects of (a) oxidative cross-linking of protein thiol groups and (b) the presence or absence of Ca2+ ions on rat liver nuclear-envelope isolation were studied. Two envelope-isolation procedures were compared: a well characterized low-ionic-strength method and a recently developed high-ionic-strength method. The latter method seems preferable to the former in respect of lower intranuclear contamination of the envelopes, suppression of endogenous serine proteinase, and maintenance of high specific activities of envelope-associated enzymes. In both procedures, however, the presence of Ca2+ gave rise to a rapid, apparently irreversible, contamination of the envelopes by intranuclear material. This effect was half-maximal at 20 microM-Ca2+. In addition, the envelopes became contaminated with intranuclear material by a Ca2+-independent mechanism, apparently resulting from N-ethylmaleimide-sensitive intermolecular disulphide-bond formation. This oxidative process seemed to have two major kinetic components (half-life, t1/2, approx. 2 min and 10 min). In view of these findings, it is recommended that (i) for most purposes, nuclear envelopes be isolated by the newly developed high-ionic-strength procedure, (ii) irrespective of the method used, Ca2+-chelators be included in all the buffers, (iii) thiol-group oxidation be prevented or reversed during the procedure.  相似文献   

6.
Nuclear envelopes and nuclear matrices were isolated from the male-rat liver. Incubation of 125I-labelled 3,3',5-tri-iodothyronine (T3) with the nuclear-envelope fraction resulted in specific binding of T3 to the membranes. Maximum specific binding occurred at 30 degrees C after 2h incubation. Storage for 1 week at -80 degrees C resulted in no loss of binding. Scatchard analysis revealed a class of binding sites with KD 86 nM. 3,3',5'-Tri-iodothyronine was as effective a competitor of [125I]T3 binding to nuclear envelopes as was L-T3 itself, and tri-iodothyroacetic acid was 70% as potent as T3. L- and D-thyronine did not compete for [125I]T3 binding. Incubation of nuclear envelopes with 0.6 M-NaCl before addition of T3 resulted in the complete loss of specific binding sites, whereas exposure of the membranes to 2.0 M-NaCl after incubation with T3 did not extract binding sites. Nuclear matrices, after incubation with [125I]T3 under the same conditions, were shown to possess a class of binding sites with a similar KD but with approx. 30% of the maximum binding capacity. Nuclear envelopes from hypothyroid animals may possess slightly lower numbers of binding sites compared with nuclear envelopes from the intact animal, whereas nuclear matrices from hypothyroid animals have the same number of binding sites as do nuclear envelopes from the intact animal. In conclusion, nuclear envelopes and nuclear matrices have a class of binding sites with relatively high affinity for T3. It is distinct from nuclear and cytosolic binding sites.  相似文献   

7.
Summary Multinucleate plant cells with genetically balanced nuclei can be generated by inhibiting cytokinesis in sequential telophases. These cells can be used to relate the effect of changes in the distribution of nuclei in the cytoplasm to the control of the timing of cell cycle transitions. Which mitotic cell cycle events are sensitive to differences in the, amount of cytoplasm surrounding each chromosomal complement has not been determined. To address this, we maximized the cell size by transiently inhibiting replication, while cell growth was not affected. The nuclei of 93% of the elongated cells reached prophase asynchronously compared to 46% of normal-sized multinucleate cells. The asynchronous prophases of normal-sized cells became synchronous at the time of nuclear-envelope breakdown, and the ensuing metaphase plate formation and anaphase onset and progression occurred synchronously. The elongated multinucleate cells were also very efficient in synchronizing the prophases at nuclear-envelope breakdown, in the prophase-to-prometaphase transition. However, 2.4% of these cells broke down the nuclear envelope asynchronously, though they became synchronous at the metaphase-to-anaphase transition. The kinetochore-microtubular cycle, responsible for coordinating the metaphase-to-anaphase transition and for the rate of sister segregation to opposite spindle poles during anaphase, remained strictly controlled and synchronous in the different mitoses of a single cell, independently of differences in the amount of cytoplasm surrounding each mitosis or its ploidy. Moreover, the degree of chromosome condensation varied considerably within the different mitotic spindles, being higher in the mitoses with the largest surrounding cytoplasm.Abbreviation NEB nuclear-envelope breakdown  相似文献   

8.
A lamin-independent pathway for nuclear envelope assembly   总被引:18,自引:11,他引:7       下载免费PDF全文
《The Journal of cell biology》1990,111(6):2247-2259
The nuclear envelope is composed of membranes, nuclear pores, and a nuclear lamina. Using a cell-free nuclear assembly extract derived from Xenopus eggs, we have investigated how these three components interact during nuclear assembly. We find that the Xenopus embryonic lamin protein LIII cannot bind directly to chromatin or membranes when each is present alone, but is readily incorporated into nuclei when both of the components are present together in an assembly extract. We find that depleting lamin LIII from an extract does not prevent formation of an envelope consisting of membranes and nuclear pores. However, these lamin-depleted envelopes are extremely fragile and fail to grow beyond a limited extent. This suggests that lamin assembly is not required during the initial steps of nuclear envelope formation, but is required for later growth and for maintaining the structural integrity of the envelope. We also present results showing that lamins may only be incorporated into nuclei after DNA has been encapsulated within an envelope and nuclear transport has been activated. With respect to nuclear function, our results show that the presence of a nuclear lamina is required for DNA synthesis to occur within assembled nuclei.  相似文献   

9.
The mechanism by which macromolecules are translocated through the nuclear pore complex (NPC) is little understood. However, recent measurements of nuclear transport in permeabilized cells showed that molecules binding to phenylalanine-glycine-rich repeats (FG repeats) in NPC proteins were translocated much faster through the NPC than molecules not interacting with FG repeats. We have studied that substrate preference of the NPC in isolated oocyte nuclei and purified nuclear envelopes by optical single transporter recording. NTF2, the transport receptor of RanGDP, was exported ~30 times faster than green fluorescent protein, an inert molecule of approximately the same size. The data confirm that restricted diffusion of inert molecules and facilitated transport of FG-repeat binding proteins are basic types of translocation through the NPC, demonstrating that the functional integrity of the NPC can be conserved in isolated nuclei and nuclear envelopes and thus opening new avenues to the analysis of nucleocytoplasmic transport.  相似文献   

10.
Early embryonic development depends on the faithful execution of basic cell biological processes whose coordination remains largely unknown. With a global network analysis, we found MEL-28 to be associated with two types of complexes, one implicated in nuclear-envelope function and the other in chromatin organization. Here, we show that MEL-28, a protein that shuttles between the nucleus and the kinetochore during the cell cycle, is required for the structural and functional integrity of the nuclear envelope. In addition, mel-28(RNAi) embryos exhibit defects in chromosome condensation, pronuclear migration, kinetochore assembly, and spindle assembly. This combination of mel-28(RNAi) phenotypes resemble those caused by depleting members of the Ran cycle in C. elegans, a conserved cellular signaling pathway that is required for mitotic spindle assembly, nuclear-envelope reformation after mitosis, and nucleocytoplasmic exchange (reviewed in). Although MEL-28 localization to the nuclear periphery is not dependent on nuclear pore components, it is dependent on RAN-1 and other key components of the Ran cycle. Thus, MEL-28 is downstream of the Ran cycle and is required for both proper nuclear-envelope function and chromatin maintenance.  相似文献   

11.
The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.  相似文献   

12.
Nuclei prepared from MOPC-21 cells were treated with the nonionic detergents Triton X-100 or Nonidet P-40. Chemical analysis revealed that nearly 90% of the nuclear phospholipid was removed by detergent treatment. The membrane-denuded nuclei remained intact with preservation of nuclear pore complexes as demonstrated by electron microscopy. Ribonucleic acid transport from detergent-treated nuclei proceeded at the same rate and to the same extent as in control nuclei. Normal nuclear restriction of nucleic acids was unaltered by removal of the nuclear membranes. The effect of temperature on transport of RNA from freshly isolated myeloma nuclei with intact nuclear envelopes was studied. No temperature transition was associated with the transport process. These data indicate that the transport of macromolecules from isolated myeloma nuclei is independent of the nuclear membrane.  相似文献   

13.
Nuclear envelope precursor vesicles were affinity purified from a Xenopus egg extract by a chromatin binding method. Vesicles bound to chromatin at 4 degrees C were dissociated with a high salt buffer and further fractionated into nuclear envelope precursor vesicle fractions 1 (PV1) and 2 (PV2) by differential centrifugation. PV1 contained larger vesicles. When chromatin was incubated in a Xenopus egg cytosol fraction supplemented with PV1, vesicles bound to chromatin, fused with each other, formed a bilayered nuclear envelope, and assembled into spherical small nuclei. However, the thus assembled nuclei did not grow to the normal size. Nuclear pore complexes were not found on the thus assembled nuclei. On the other hand, PV2 contained smaller vesicles. PV2 vesicles bound to chromatin, fused little with each other in the Xenopus egg cytosol fraction, and no nuclei were assembled. When PV1 supplemented with PV2 was used for the nuclear assembly reaction, the assembled nuclei grew to the normal size. Nuclear pore complexes existed in the thus assembled nuclear envelopes. These results suggested that 1) two vesicle populations, PV1 and PV2, are necessary for the assembly of normal sized nuclei, 2) PV1 contains a chromatin targeting molecule(s) and membrane fusion machinery, 3) PV2 contains a chromatin targeting molecule(s) and a molecule(s) necessary for nuclear pore complex assembly, and 4) PV1 has the ability to assemble a nuclear membrane, and PV2 is necessary for the assembly of nuclear pore complexes and for nuclei to grow to the normal size. An in vitro nuclear assembly system constituted with affinity-purified vesicle fractions, PV1 and PV2, was established.  相似文献   

14.
红豆草根瘤侵染细胞核在细胞凋亡中的超微结构变化   总被引:1,自引:0,他引:1  
用透射电镜观察红豆草根瘤侵染细胞核在细胞凋亡过程中的超微结构,以探讨红豆草根瘤侵染细胞核在发育过程中的超微结构变化及其与细胞凋亡的关系.结果表明,红豆草根瘤侵染细胞核的超微结构随细胞发育程度不同而不同.在幼龄侵染细胞中,细胞核体积较大,近似圆形.在即将成熟和成熟的侵染细胞中,细胞核膜有内陷现象,其核仁常具有核仁泡和核仁联合体.在早期凋亡的侵染细胞中,细胞核体积减小,形状变得不规则,核膜出现大量内陷,在其表面形成许多大的突起和深的沟槽,有时还有内质网、线粒体、小液泡和细菌等位于核膜的内陷处,而且核仁也开始裂解.在后期凋亡的侵染细胞中,除细菌解体外,还出现核仁消失,核膜破裂,核质外流,并在细胞质中形成一些电子密度很高,无一定形状的团块状物质.  相似文献   

15.
Since odontoclasts share similar characteristics with osteoclasts, this study has examined whether odontoclasts exhibit cytological alteration after treatment with bisphosphonate, which induces apoptosis of osteoclasts. After the administration of bisphosphonate to 6-day-old rabbits, many odontoclasts detached from the dentine surface of the deciduous teeth, resulting in the reduction of tartrate-resistant acid phosphatase (TRAP-ase) and immunoreactivity for cathepsin K. Transmission electron microscopy revealed a number of odontoclasts showing poorly developed or a lack of ruffled borders, a Golgi apparatus markedly reduced in size, and numerous cytoplasmic vesicles. The bisphosphonate-treated odontoclasts displayed fragmented DNA in the pyknotic nuclei evidenced by terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick-end labeling, indicating that bisphosphonate can induce apoptosis of the odontoclasts. Ultrastructural observations of the apoptotic odontoclasts revealed condensed heterochromatin at the margin of the nuclear envelope, assembled arrays of rough endoplasmic reticulum, and many vacuoles and vesicles. Some apoptotic odontoclasts showed ladder-like structures between the adjacent nuclear envelopes, enlargement of the nuclear envelopes, and the formation of a ribosome-like granular structure in the nuclei. Thus, odontoclasts are able to undergo apoptosis after bisphosphonate treatment; this results in cytological alterations, including reduced resorption activity and the inhibition of protein synthesis/transport as indicated by the diminished TRAPase and cathepsin K and the poorly developed Golgi apparatus, respectively. Nuclear alteration as evidenced by the appearance of ladder-like and ribosome-like structures was characteristic of apoptotic odontoclasts.  相似文献   

16.
Previously we reported an original method of visualizing the shape of yeast nuclei by the expression of green fluorescent protein (GFP)-tagged Xenopus nucleoplasmin in Saccharomyces cerevisiae. To identify components that determine nuclear structure, we searched for mutants exhibiting abnormal nuclear morphology from a collection of temperature-sensitive yeast strains expressing GFP-tagged nucleoplasmin. Four anu mutant strains (anu1-1, 2-1, 3-1 and 4-1; ANU=abnormal nuclear morphology) that exhibited strikingly different nuclear morphologies at the restrictive temperature as compared to the wild-type were isolated. The nuclei of these mutants were irregularly shaped and often consisted of multiple lobes. ANU1, 3 and 4 were found to encode known factors Sec24p, Sec13p and Sec18p, respectively, all of which are involved in the formation or fusion of intracellular membrane vesicles of protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. On the other hand, ANU2 was not well characterized. Disruption of ANU2 (delta anu2) was not lethal but conferred temperature-sensitivity for growth. Electron microscopic analysis of anu2-1 cells revealed not only the abnormal nuclear morphology but also excessive accumulation of ER membranes. In addition, both anu2-1 and delta anu2 cells were defective in protein transport between the ER and the Golgi, suggesting that Anu2p has an important role in vesicular transport in the early secretory pathway. Here we show that ANU2 encodes a 34 kDa polypeptide, which shares a 20% sequence identity with the mammalian epsilon-COP. Our results suggest that Anu2p is the yeast homologue of mammalian epsilon-COP and the abrupt accumulation of the ER membrane caused by a blockage of the early protein transport pathway leads to alteration of nuclear morphology of the budding yeast cells.  相似文献   

17.
During their life cycles, viruses typically undergo many transport events throughout the cell. These events depend on a variety of both viral and host proteins and are often not fully understood. Such studies are often complicated by asynchronous infections and the concurrent presence of various viral intermediates in the cells, making it difficult to molecularly define each step. In the case of the herpes simplex virus type 1, the etiological agent of cold sores and many other illnesses, the viral particles undergo an intricate series of transport steps during its life cycle. Upon entry by fusion with a cellular membrane, they travel to the host cell nucleus where the virus replicates and assembles new viral particles. These particles then travel across the two nuclear envelopes and transit through the trans-Golgi network before finally being transported to and released at the cell surface. Though viral components and some host proteins modulating these numerous transport events have been identified, the details of these processes remain to be elucidated. To specifically address how the virus escapes the nucleus, we set up an in vitro model that reproduces the unconventional route used by herpes simplex type 1 virus to leave nuclei. This has not only allowed us to clarify the route of capsid egress of the virus but is now useful to define it at the molecular level.  相似文献   

18.
A nuclear carbohydrate-binding protein with a molecular mass of 67 kDa (CBP67), which is specific for glucose residues, was purified to essential homogeneity from rat liver nuclear extracts. This protein could also be isolated from nuclear ribonucleoprotein (RNP) complexes by extraction in the presence of 0.6 M or 2 M NaCl, but it was absent in polysomal RNP complex. The binding of the purified protein, which has an isoelectric point of 7.3, to glucose-containing glycoconjugates depends on the presence of Ca2+ and Mg2+. Using closed nuclear envelope vesicles as a system to study nuclear transport of RNA, it was shown that both entrapped polysomal mRNA and nuclear RNA precursors are readily exported from the vesicles in an ATP-dependent manner. The transport was unidirectional and strongly promoted by the poly(A) segment attached to these RNAs. In contrast, nuclear RNP complexes entrapped into the vesicles together with glucose-conjugated bovine serum albumin or nucleoplasmin, or bird nest glycoprotein, were not exported into the extravesicular space. However, transport of nuclear RNP complexes could be achieved in the presence of glucose or after co-addition of a glucose-recognizing lectin from Pellina semitubulosa. In Western blots, radioiodinated CBP67 binds to an 80-kDa polypeptide both in isolated rat liver nuclear envelopes and pore-complex laminae. From these results we postulate that CBP67 may direct nuclear RNP complexes to the nuclear pore.  相似文献   

19.
Recent evidence suggests that low molecular weight GTP-binding proteins may play important roles in a variety of membrane transport processes. In order to address the question of whether these proteins are involved in transport processes in the nerve axon, we have assessed their presence in rapid transport membranes from rabbit optic nerve. We report the characterization of a group of low molecular weight GTP-binding proteins which are constituents of rapid transport vesicles. Although these proteins are components of rapid transport vesicles, they are apparently not major rapidly transported species. They are localized in cytosolic as well as in membrane fractions of axons, and the membrane-associated form behaves as an integral membrane protein(s). These proteins are also found in association with a variety of vesicular and organellar components of neurons including coated vesicles, synaptic vesicles, synaptic plasma membranes, and mitochondria. We discuss the possible roles of these proteins in rapid axonal transport and exocytosis.  相似文献   

20.
Optical Single Transporter Recording (OSTR) is a technique for analyzing membrane transport kinetics at high sensitivity, selectivity, and spatial resolution. Cellular membranes are firmly attached to microarrays of small test compartments (TCs) with diameters between approximately 0.1 and 100 microm and depths between approximately 10 and 100 microm. This permits to generate either "small" membrane patches containing few transporters or "large" patches containing many transporters. Transport of substrates across membrane patches is recorded by confocal microscopy. The present article reviews recent applications of OSTR to the nuclear pore complex (NPC). The results show that the transport functions of the NPC, previously studied almost exclusively in intact and permeabilized cells, are conserved in isolated nuclei and can be fully reconstituted in purified nuclear envelopes by addition of recombinant transport factors. This opens new avenues to the analysis of nuclear transport including the export of nucleic-acid-protein and ribosomal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号