首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunological mechanisms underlying the role of mast cells in the pathogenesis of inflammatory bowel disease (IBD) are poorly defined. In this study, non-IgE mediated colonic hypersensitivity responses in BALB/c mice induced by skin sensitization with dinitrofluorobenzene (DNFB) followed by an intrarectal challenge with dinitrobenzene sulfonic acid featured as a model to study the role of mast cells in the development of IBD. Vehicle- or DNFB-sensitized mice were monitored for clinical symptoms and inflammation 72 h after dinitrobenzene sulfonic acid challenge. DNFB-sensitized mice developed diarrheic stool, increased colonic vascular permeability, hypertrophy of colonic lymphoid follicles (colonic patches), and showed cellular infiltration at the microscopic level. Increased numbers of mast cells were found in the colon of DNFB-sensitized mice located in and around colonic patches associated with elevated levels of mouse mast cell protease-1 in plasma indicating mast cell activation. Colonic patches of DNFB mice, stimulated in vitro with stem cell factor indicated that an increase in TNF-alpha levels in the colon is mainly mast cell originated. Finally, neutrophil infiltration was observed in the colon of DNFB-sensitized mice. Induction of this model in mast cell-deficient WBB6F(1) W/W(v) mice shows a profound reduction of characteristics of the colonic hypersensitivity reaction. Reconstitution with bone marrow-derived mast cells in WBB6F(1) W/W(v) mice fully restored the inflammatory response. This study demonstrates the importance of mast cells in the development of clinical symptoms and inflammation in the presented murine model for IBD.  相似文献   

2.
Inflammatory bowel disease (IBD) describes chronic inflammatory conditions of the gastrointestinal tract, and TNF-alpha plays a pivotal role in mediating the response. The proinflammatory cytokine TNF-alpha is rapidly released by mast cells after degranulation. In the present study, we hypothesized TNF-alpha to be an important player in our recently described mast cell-dependent murine model for IBD. The effect of neutralizing anti-TNF-alpha MAb was studied on colonic hypersensitivity in mice induced by a skin application of dinitrofluorobenzene (DNFB) followed by an intrarectal challenge with dinitrobenzene sulfonic acid. Features of the colonic hypersensitivity response included diarrhea, mast cell infiltration and activation, infiltration of inflammatory cells in the colon, colonic patch hypertrophy, and increased mast cell-derived TNF-alpha levels in the colon. Anti-TNF-alpha MAb could effectively abrogate diarrhea in DNFB-sensitized mice 72 h after the challenge. The numbers of colonic patches and total tissue damage scores were reduced by anti-TNF-alpha MAb treatment in DNFB-sensitized mice 72 h after the challenge. Mast cell infiltration and activation remained unaffected by neutralizing anti-TNF-alpha MAb. Treatment with the corticosteroid dexamethasone, a frequently used therapeutic treatment in IBD, resulted in a reduction of diarrhea, cellular infiltration, and total tissue damage scores to the same extent as anti-TNF-alpha MAb. Additionally, dexamethasone treatment could also reduce total TNF-alpha levels in the colon, mast cell numbers, and mast cell activation in both vehicle- and DNFB-sensitized mice 72 h after the challenge. These findings suggest that TNF-alpha can play an instrumental role in causing inflammatory responses in the present murine model for IBD downstream from mast cell activation.  相似文献   

3.
Mucosal mast cells are implicated in visceral hypersensitivity associated with irritable bowel syndrome (IBS). In this study, we investigated the role of mast cells in the development of visceral hypersensitivity by using mast cell deficient (Ws/Ws) rats and their control (W+/W+). In W+/W+ rats, an injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the proximal colon produced a significant decrease in pain threshold of the distal colon. Severe mucosal necrosis and inflammatory cell infiltration with concomitant increase in tissue myeloperoxidase activity were observed in the proximal colon that was directly insulted by TNBS, whereas neither necrosis nor increased myeloperoxidase activity occurred in the distal colon, indicating that TNBS-induced hypersensitivity is not caused by the local tissue damage or inflammation in the region of the gut where distention stimuli were applied. On the other hand, TNBS failed to elicit visceral hypersensitivity in Ws/Ws rats. This finding indicates that mast cells are essential for development of TNBS-induced visceral hypersensitivity in rats. Since the severity of TNBS-induced proximal colon injury and MPO activity was not affected by mast cell deficiency, it is unlikely that abolishment of visceral hypersensitivity in mast cell deficient rats was a result of altered development of the primary injury in the proximal colon. There was no difference between sham-operated Ws/Ws and W+/W+ rats in colonic pain threshold to distention stimuli, indicating that mast cells play no modulatory roles in normal colonic nociception. The present results support the view that mucosal mast cells play key roles in the pathogenesis of IBS.  相似文献   

4.
Yang JM  Xian YF  Ip PS  Wu JC  Lao L  Fong HH  Sung JJ  Berman B  Yeung JH  Che CT 《Phytomedicine》2012,19(5):402-408
Visceral hypersensitivity is an important characteristic feature of functional gastrointestinal disorders, such as irritable bowel syndrome (IBS). This study evaluated the effect of Schisandra chinensis on visceral hyperalgesia induced by neonatal maternal separation (NMS) in an IBS rat model. The visceromotor responses to colorectal balloon distension (CRD) were measured by abdominal withdrawal reflex (AWR) and electromyographic (EMG) activities. NMS control rats (receiving vehicle) underwent aggravated visceral pain in response to CRD as compared to normal rats, evidenced by the reduced pain threshold, enhanced AWR scores and EMG responses. Treatment with a 70% ethanol extract of S. chinensis (0.3g/kg and 1.5g/kg/day) for 7 days resulted in an increase in the pain threshold (NMS control: 19.1±1.0mmHg vs low-dose: 24.8±1.3mmHg and high-dose: 25.2±1.8mmHg, p<0.01), and abolished the elevated AWR and EMG responses to CRD in NMS rats (AUC values of EMG response curve were: 1952±202 in NMS control group vs 1074±90 in low-dose group and 1145±92 in high-dose group, p<0.001), indicating that S. chinensis could reverse the visceral hypersensitivity induced by early-life stress event. The result of ELSA measurement shows that the elevated serotonin (5-HT) level in the distal colon of NMS rats returned to normal level after treatment with S. chinensis. Moreover, the increase in pain threshold in rats treated with S. chinensis was associated with a decline of the mRNA level of 5-HT(3) receptor in the distal colon. All available results demonstrate that S. chinensis can reverse visceral hypersensitivity induced by neonatal-maternal separation, and the effect may be mediated through colonic 5-HT pathway in the rat.  相似文献   

5.
Humoral antibody was shown to interfere specifically with the expression of cell-mediated immunity (delayed hypersensitivity) in an in vivo system. Mice that received peritoneal exudate cells obtained from guinea pigs sensitized to 1-chloro-2,4dinitrobenzene (DNCB) exhibited delayed hypersensitivity reactions after challenge with the sensitizing agent. While control groups that received either normal sera, saline, or anti-BSA (bovine serum albumin) in addition to peritoneal exudate cells from sensitized guinea pigs exhibited positive delayed reactons to challenge with DNCB, mice that received anti-DNP (dinitrophenyl group) in addition to the senstized cells were prevented from exhibiting a delayed reaction to DNCB.  相似文献   

6.
We investigated whether TNB alters colonic tissue levels of PAF at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 0.25 ml of 50% ethanol containing 30 mg of trinitrobenzene. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. TNB administration increased tissue levels of PAF and increased the average force of each colonic contraction. Pretreatment with the PAF receptor antagonist WEB-2170 prior to TNB infusion decreased tissue concentrations of PAF and ameliorated the altered motility parameters seen with TNB alone. These results suggest that PAF is stimulated by TNB and may participate in colonic dysmotility during inflammatory states.  相似文献   

7.
The effect of long term administration of thyroid hormones and its deprivation on delayed type hypersensitivity (DTH) reaction to 2-4 dinitrochlorobenzene (DNCB) was studied. Animals were either pre-treated with thyroid hormones (T3 or T4) for 15 days and then subjected to DNCB skin test or the animals received thyroid hormones and simultaneously subjected to DNCB skin test. In both the cases DTH reaction was found to be increased significantly. When DNCB skin test was performed in the thyroidectomized animals, DNCB skin reaction was significantly decreased and the reaction was restored to normal following supplementation of thyroid hormones to the thyroidectomized animals. TLC and ALC were increased significantly following hormone treatment and thyroidectomized animals. TLC hand, induced significant depression in the count which was restored by hormone administration to the thyroidectomized animals.  相似文献   

8.
Wu XY  Pan H  Mei L 《生理学报》2008,60(3):419-424
近年来有观点认为溃疡性结肠炎(ulcerative colitis, UC)是一种神经源性炎症.我们实验室曾报道,以脊髓蛛网膜下腔(intrathecal, ith)注射半抗原二硝基氯苯(2,4-dinitrochlorobenzene, DNCB)的方法,在致敏大鼠建立了结肠炎模型.本研究拟进一步探讨此结肠炎过程中神经免疫介导物移动抑制因子(migration inhibitory factor, MIF)是否参与其发病机制.选用7~9周龄健康雄性Sprague-Dawley大鼠,用免疫荧光双染法分别测定ith注射DNCB后肠壁经组织和脊髓组织MIF蛋白的表达.观察MIF抗体预处理对ith注射DNCB后大鼠的疾病活动指数(disease active index, DAI)评分和结肠组织病理变化的影响.结果表明:ith注射DNCB大鼠的结肠神经组织和脊髓组织MIF蛋白的荧光强度显著高于ith注射乙醇(对照)组;MIF抗体(1:10,1:5)预处理能够显著减轻由ith注射DNCB引起的DAI高评分和结肠病理变化.上述结果提示,肠和脊髓神经组织MIF活性升高或/和释放增多是ith注射DNCB后结肠炎发生的一个重要原因,神经免疫机制参与了ith注射DNCB引起的大鼠结肠炎过程.  相似文献   

9.
Although the cause and development of most inflammatory and fibrotic interstitial lung diseases are unknown, both the antigenic stimuli and the immunopathogenic mechanisms that produce the syndrome of hypersensitivity pneumonitis have been well described. Hypersensitivity pneumonitis is a group of related inflammatory and fibrotic interstitial lung diseases that result from hypersensitivity immune reactions to the repeated inhalation of antigens derived from fungal, bacterial, animal protein, and reactive chemical sources. Immune complex-induced inflammatory reactions initiate acute lung injury; T cell-mediated hypersensitivity reactions perpetuate it and induce chronic inflammatory, granulomatous, and fibrotic responses in the interstitium of the lungs. Because the natural history of many interstitial lung diseases of unknown causes involves the progressive evolution through these same phases, knowledge about immune pathogenesis gained from studies of hypersensitivity pneumonitis may provide a way to understand the causes and development of other interstitial lung diseases.  相似文献   

10.
I Zusman  Z Madar  A Nyska 《Acta anatomica》1992,145(2):106-111
The development of tumorigenic conditions in the carcinogen-exposed rat colon was studied using selected morphological, histochemical, immunohistochemical and biochemical methods of analysis. Rats were treated with two carcinogens: 1,2-dimethylhydrazine and N-methyl-N'-nitro-N-nitrosoguanidine alone or with deoxycholic acid as a tumor promoter. It was found that 3 months after treatment of animals with the carcinogens the following changes were developed in colonic tissue: infiltration of lymphocytes in the mucous membrane, high increase in mitotic index among epithelial cells, negative reactions of colonic cells for neutral mucopolysaccharides and sulfomucins and positive reactions to carboxyl groups, nonsulfated acid mucosubstances and tissue polypeptide antigens. An increase in the activity of ornithine decarboxylase in colonic tissue was developed within the same time period and has been seen only in those tissues which were characterized by the development of precancerous conditions. Individual variations were observed in the manifestation of the studied parameters in rat neoplastic colonic tissues. It is suggested that these differences reflect an individual sensitivity of animals to carcinogens and the magnitude of the dysplastic processes induced in the colon.  相似文献   

11.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

12.
Cho JY  Chang HJ  Lee SK  Kim HJ  Hwang JK  Chun HS 《Life sciences》2007,80(10):932-939
beta-Caryophyllene (BCP), a naturally occurring plant sesquiterpene, was examined for anti-inflammatory activity in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS). Colitis was induced by exposing male BALB/c mice to 5% DSS in drinking water for 7 days. BCP in doses of 30 and 300 mg/kg was administered orally once a day, beginning concurrently with exposure to DSS. The body weight and colon length were measured, and histological damage and myeloperoxidase (MPO) activity as well as inflammatory cytokines were assessed in both serum and colonic tissue after 7 days of treatment with DSS. The DSS treatment damaged the colonic tissue, increased MPO activity and inflammatory cytokines, lowered the body weight, and shortened the length of the colon. Oral administration of BCP at 300 mg/kg significantly suppressed the shortening of colon length and slightly offset the loss of body weight. BCP treatment (300 mg/kg) also significantly reduced the inflammation of colon and reversed the increase in MPO activity that had been induced by exposure to DSS. Further, BCP significantly suppressed the serum level of IL-6 protein (a 55% reduction) as well as the level of IL-6 mRNA in the tissue. These results demonstrate that BCP ameliorates DSS-induced experimental colitis, and may be useful in the prevention and treatment of colitis.  相似文献   

13.
Early experiments performed by our group with the phage display technique revealed the potential for using epitope-displaying phages (mimotopes) as a tool for tick antigen discovery. Thus, as a preliminary study, inflammatory reactions induced by phage display tick-borne candidates were investigated by using the cutaneous hypersensitivity test. The profile of selected Rhipicephalus microplus mimotopes was assessed on tick field-exposed cattle and our data indicated a pattern similar to immediate hypersensitivity reaction and not a delayed immune response as expected. However, the wild-type phage inoculation surprisingly induced a strong immediate response on its own. Such reactions indicate that the wild-type phage may have hidden many of the potential reactions raised by the mimotopes. The study of the inflammatory reactions to these phage mimotopes in tick-infested hosts may provide basic information about the immune reaction. Finally, this work is of relevance for when considering research alternatives for finding and characterization of antigens by the phage display technique.  相似文献   

14.
Nitric oxide and its metabolites undergo nitration reactions with unsaturated fatty acids during oxidative inflammatory conditions, forming electrophilic nitro-fatty acid derivatives. These endogenous electrophilic mediators activate anti-inflammatory signaling reactions, serving as high-affinity ligands for peroxisome proliferator-activated receptor γ (PPARγ). Here we examined the therapeutic effects of 9- or 10-nitro-octadecenoic oleic acid (OA-NO2) and native oleic acid (OA) in a mouse model of colitis. OA-NO2 reduced the disease activity index and completely prevented dextran sulfate sodium-induced colon shortening and the increase in colonic p65 expression. Increased PPARγ expression was observed in colon samples as well as in cells after OA-NO2 administration, whereas no effect was seen with OA. This induction of PPARγ expression was completely abolished by the PPARγ antagonist GW9662. 5-Aminosalicylic acid, an anti-inflammatory drug routinely used in the management of inflammatory bowel disease, also increased PPARγ expression but to a lesser extent. Altogether, these findings demonstrate that administration of OA-NO2 attenuates colonic inflammation and improves clinical symptoms in experimental inflammatory bowel disease. This protection involves activation of colonic PPARγ.  相似文献   

15.
Eosinophilic inflammation is a feature of a variety of gastrointestinal (GI) disorders including eosinophil-associated GI disorder, allergy, inflammatory bowel disease, and parasite infection. Elucidating the mechanisms of eosinophil infiltration into the GI tract is important to the understanding of multiple disease processes. We hypothesize that eosinophilia in the large intestine (colon) can be induced by an antigen in a host that is associated with Th2-skewed antigen-specific immune responses. To investigate the importance of antigenic triggering, we established polarized antigen-specific Th2 type responses in BALB/c mice, using ovalbumin in conjunction with aluminum hydroxide. Upon challenge at the colonic mucosa through transient (3-4 days) expression of the antigen gene encoded in an adenovirus vector, sensitized animals developed significant subepithelial colonic inflammation, characterized by marked eosinophilic infiltration, and the presence of enlarged and increased numbers of lymphoid follicles. The alterations peaked around day 5 and resolved over the next 5-10 days, and no epithelial cell damage was detected through the entire course. Administration of a control (empty) adenovirus vector did not lead to any pathological changes. These data suggest that colonic eosinophilia can be induced by exposure to an antigen associated with preexisting Th2-skewed responses. Thus the model established here may provide a useful tool to study GI and, in particular, colonic inflammation with respect to underlying mechanisms involved in the recruitment and the immediate function of eosinophils.  相似文献   

16.
Intestinal epithelial cells not only present a physical barrier to bacteria but also participate actively in immune and inflammatory responses. The migration of epithelial cells from the crypt base to the surface is accompanied by a cellular differentiation that leads to important morphological and functional changes. It has been reported that the differentiation of colonic epithelial cells is associated with reduced interleukin (IL)-8 responses to IL-1beta. Although toll-like receptor 4 (TLR4) has been previously identified to be an important component of mucosal immunity to lipopolysaccharide (LPS) in the colon, little is known about the regulation of TLR4 in colonic epithelial cells during cellular differentiation. We investigated the effects of differentiation on LPS-induced IL-8 secretion and on the expression of TLR4. Differentiation was induced in colon cancer cell line HT-29 cells by butyrate treatment or by post-confluence culture and assessed by measuring alkaline phosphatase (AP) activity. IL-8 secretion was measured by ELISA, and TLR4 protein and mRNA expressions were followed by Western blot and RT-PCR, respectively. HT-29 cells were found to be dose-dependently responsive to LPS. AP activity increased in HT-29 cells by differentiation induced by treatment with butyrate or post-confluence culture. We found that IL-8 secretion induced by LPS was strongly attenuated in differentiated cells versus undifferentiated cells, and that cellular differentiation also attenuated TLR4 mRNA and protein expressions. Pretreating HT-29 cells with tumor necrosis factor (TNF)-alpha or interferon (INF)-gamma augmented LPS-induced IL-8 secretion and TLR4 expression. These TNF-alpha- or INF-gamma-induced augmentations of LPS response and TLR4 expression were all down-regulated by differentiation. Collectively, we conclude that cellular differentiation attenuates IL-8 secretion induced by LPS in HT-29 cells, and this attenuation is related with the down-regulation of TLR4 expression.  相似文献   

17.
Astaxanthin (AX) is one of the marine carotenoid pigments, which possess powerful biological antioxidant, anti-inflammatory and anti-cancer properties. The purpose of this study is to investigate possible inhibitory effect of AX against inflammation-related mouse colon carcinogenesis and dextran sulfate sodium (DSS)-induced colitis in male ICR mice. We conducted two different experiments. In the first experiment, we evaluated the effects of AX at three dose levels, 50, 100 and 200 ppm in diet, on colitis-associated colon carcinogenesis induced by azoxymethane (AOM)/DSS in mice. In the second, the effects of the AX (100 and 200 ppm) in diet on DSS-induced colitis were determined. We found that dietary AX significantly inhibited the occurrence of colonic mucosal ulcers, dysplastic crypts, and colonic adenocarcinoma at week 20. AX-feeding suppressed expression of inflammatory cytokines, including nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, inhibited proliferation, and induced apoptosis in the colonic adenocarcinomas. Feeding with 200 ppm AX, but not 100 ppm, significantly inhibited the development of DSS-induced colitis. AX feeding (200 ppm in diet) also lowered the protein expression of NF-κB, and the mRNA expression of inflammatory cytokines, including IL-1β, IL-6, and cyclooxygenase (COX)-2. Our results suggest that the dietary AX suppresses the colitis and colitis-related colon carcinogenesis in mice, partly through inhibition of the expression of inflammatory cytokine and proliferation. Our findings suggest that AX is one of the candidates for prevention of colitis and inflammation-associated colon carcinogenesis in humans.  相似文献   

18.
The aim of the present study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seed (GSPE) in the treatment of recurrent ulcerative colitis (UC) in rats. To induce recurrent colitis, rats were instilled with 2,4,6-trinitrobenzenesulfonic acid (TNBS) (80?mg/kg) into the colon through the cannula in the first induced phase, and then the rats were instilled a second time with TNBS (30?mg/kg) into the colon on the sixteenth day after the first induction UC. Rats were intragastrically administered GSPE (200?mg/kg) per day for 7?days after twice-induced colitis by TNBS. Sulfasalazine at 500?mg/kg was used as a positive control drug. Rats were killed 7?days after GSPE treatment. The colonic injury and inflammation were assessed by macroscopic and macroscopic damage scores, colon weight/length ratio (mg/cm), and myeloperoxidase activity. Then, superoxide dismutase, glutathione peroxidase, inducible nitric oxide synthase (iNOS) activities, and the levels of malonyldialdehyde, glutathione, and nitric oxide in serum and colonic tissues were measured. Compared with the recurrent UC group, GSPE treatment facilitated recovery of pathologic changes in the colon after induction of recurrent colitis, as demonstrated by reduced colonic weight/length ratio and macroscopic and microscopic damage scores. The myeloperoxidase and iNOS activities with malonyldialdehyde and nitric oxide levels in serum and colon tissues of colitis rats were significantly decreased in the GSPE group compared with those in the recurrent UC group. In addition, GSPE treatment was associated with notably increased superoxide dismutase, glutathione peroxidase activities, and glutathione levels of colon tissues and serum of rats. GSPE exerted a protective effect on recurrent colitis in rats by modifying the inflammatory response, inhibiting inflammatory cell infiltration and antioxidation damage, promoting damaged tissue repair to improve colonic oxidative stress, and inhibiting colonic iNOS activity to reduce the production of nitric oxide.  相似文献   

19.
Impaired epithelial barrier function and estrogens are recognized as factors influencing inflammatory bowel disease (IBD) pathology and disease course. Estrogen receptor-β (ERβ) is the most abundant estrogen receptor in the colon and a complete absence of ERβ expression is associated with disrupted tight-junction formation and abnormal colonic architecture. The aim of this study was to determine whether ERβ signaling has a role in the maintenance of epithelial permeability in the colon. ERβ mRNA levels and colonic permeability were assessed in IL-10-deficient mice and HLA-B27 rats by RT-PCR and Ussing chambers. ERβ expression and monolayer resistance were measured in HT-29 and T84 colonic epithelial monolayers by RT-PCR and electric cell-substrate impedance sensing. The effect of 17β-estradiol and an estrogen agonist [diarylpropionitrile (DPN)] and antagonist (ICI 182780) on epithelial resistance in T84 cells was measured. Expression of ERβ and proinflammatory cytokines was investigated in colonic biopsies from IBD patients. Levels of ERβ mRNA were decreased, whereas colonic permeability was increased, in IL-10-deficient mice and HLA-B27 transgenic rats prior to the onset of colitis. T84 cells demonstrated higher resistance and increased levels of ERβ mRNA compared with HT-29 cells. 17β-estradiol and DPN induced increased epithelial resistance in T84 cells, whereas an ERβ blocker prevented the increased resistance. Decreased ERβ mRNA levels were observed in colonic biopsies from IBD patients. This study suggests a potential role for ERβ signaling in the modulation of epithelial permeability and demonstrates reduced ERβ mRNA in animal models of colitis and colon of patients with inflammatory bowel disease.  相似文献   

20.
The background activity of the guinea pig caudal mesenteric ganglion (CMG) neurons and their reflex reactions to colonic distension were studied on isolated combined preparations including the CMG and a colon segment connected with the lumbar colonic nerves. In the control, 62% of the neurons under study generated background activity, which consisted of irregular or regular “fast” excitatory postsynaptic potentials (fEPSP) and action potentials (AP). In 27% of the CMG neurons called “pacemaker-like neurons” (PLN), the background activity was represented by highly regular AP never observed in the CMG completely isolated from the distal colon. Reflex responses evoked by colonic distension were recorded from 76% of the units studied. The distension evoked fEPSP and AP in “silent” neurons and increased the background activity. Both the background activity and reflex responses were shown to be due to nicotinic cholinergic transmission. In some neurons, reflex responses (regular AP) were generated as superimposed on a slow depolarization; the latter was insensitive to nicotinic antagonists and either sensitive or insensitive to muscarinic antagonists. It has been concluded that CMG neurons receive nicotinic, muscarinic, and, probably, peptidergic afferent inputs from the distal colon. Although there are no true pacemaker neurons in CMG, some neurons generate pacemaker-like activity of a synaptic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号