首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the efficacy of organic zinc (Zn) supplementation on growth, nutrient utilization and mineral profile as compared to inorganic source [zinc sulphate (ZnSO4)], 18 Muzaffarnagari male lambs of 11.30 ± 0.45 kg mean body weight (4–5 months of age) were divided into three groups of six animals in each in a randomized block design. Lambs in the control group were fed a standard total mixed ration (TMR) consisted of 60 kg/100 kg of concentrate mixture (CM) and 40 kg/100 kg of wheat straw. CM was consisted of 300 g/kg crushed maize grain, 270 g/kg soybean meal, 400 g/kg wheat bran, 20 g/kg mineral mixture (without Zn) and 10 g/kg common salt. Animals in the experimental groups were additionally supplemented with 20 mg Zn/kg of diet either through inorganic (ZnSO4) or organic [Zn-methionine AA complex (Zn-meth)] sources. Experimental feeding was done for a period of 150 days including a 6 days metabolism trial. The intake of dry matter (DM), organic matter (OM), crude protein (CP), digestible CP and total digestible nutrients and digestibility of DM, OM, CP, ether extract, neutral detergent fibre and hemicellulose were comparable (P>0.05) among the three groups. However, digestibility of cellulose and acid detergent fibre was significantly (P<0.05) higher in Zn-meth group as compared to control group. Though the balance of calcium was adversely affected (P<0.01) in both the Zn supplemented groups, but it was significantly higher in Zn-meth group compared to ZnSO4 group. While apparent absorption and retention of nitrogen, phosphorus, copper, iron and manganese were similar (P>0.05) among different groups, retention of Zn (P<0.05) as well as its concentration in the serum (P<0.01) were highest in Zn-meth group, followed by ZnSO4 group and lowest in the control group, suggesting higher bioavailability of Zn from Zn-meth as compared to ZnSO4. Average daily gain of the lambs and feed conversion efficiency were also significantly (P<0.05) higher in Zn-meth group as compared to control and ZnSO4 groups, suggesting a positive role of organic zinc supplementation on the performance of lambs.  相似文献   

2.
Eighteen male lambs (8-9 months of age, 25.00 +/- 0.90 kg body weight) were divided into three groups of six animals in each and fed a total mixed ration (TMR) containing concentrate mixture (30% maize grain, 27% soybean meal, 40% wheat bran, 2% mineral mixture, and 1% common salt) and wheat straw in 65:35 ratio and supplemented with selenium (Se) as sodium selenite at 0 (T1, control), 0.15 (T2), and 0.30 ppm (T3) levels. Experimental feeding was done for a period of 90 days including a 6-day metabolism trial. To assess the growth performance, lambs were weighed every 15 days throughout the experimental period. All the lambs were intramuscularly inoculated with a single dose (2 ml) of haemorrhagic septicaemia oil adjuvant vaccine on 0 day to evaluate the humoral immune response. Blood samples were collected on 0 day and thereafter at 30 days interval. Results revealed that supplementation of Se both at 0.15 and 0.30 ppm levels had no significant (P > 0.05) effect on intake and digestibility of dry matter, organic matter, crude protein (CP), ether extract, neutral detergent fiber, acid detergent fiber, and hemicellulose; balances of calcium and phosphorus; and level and intake of digestible CP and total digestible nutrients. Se supplementation also had no significant (P > 0.05) effect on the levels of serum total cholesterol, total protein, albumin, globulin, albumin/globulin ratio, tri-iodothyronine (T(3)), thyroxine (T(4)), and T(4)/T(3) ratio; and serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase enzyme activity in the lambs. However, there was a significant (P < 0.05) increase in the plasma Se levels, red blood cell glutathione peroxidase enzyme activity, and humoral immune response in both the Se-supplemented groups. Feed (TMR) required per kilogram gain was less by 11.1% and 16.5% in groups T2 and T3, respectively, as compared to control (T1) group. Average daily gain was highest (108.5 g) in group T3, followed by group T2 (98.2 g), and lowest (89.06 g) in the control group (T1). These results indicated that supplementation of 0.15 and 0.3 ppm Se in the diet (having 0.19 ppm Se) of lambs significantly improves their immune response and antioxidant status.  相似文献   

3.
4.
Two trials were conducted in a 2?×?2?+?1 factorial arrangement based on a completely randomized design to evaluate the effects of different sources of selenium (Se) on performance, blood metabolites, and nutrient digestibility in male lambs on a barley-based diet. The first trial lasted for 70 days and consisted of 30 lambs (35.6?±?2.6 kg mean body weight, about 4–5 months of age) which were randomly allotted to five treatments including: (1) basal diet (containing 0.06 mg Se/kg DM; control) without supplementary Se, (2) basal diet?+?0.20 mg/kg Se as sodium selenite (SeS 0.20), (3) basal diet?+?0.40 mg/kg Se as sodium selenite (SeS 0.40), (4) basal diet?+?0.20 mg/kg Se as selenium yeast (SeY 0.20), and (5) basal diet?+?0.40 mg/kg Se as selenium yeast (SeY 0.40). For the second trial, four lambs from each group of experiment 1 were randomly allocated to individual metabolic cages for 14 days to measure the effects of dietary Se on nutrient digestibility. The results revealed that there were no significant differences for average daily gain, average daily feed intake, feed/gain ratio, hematological parameters (packed cell volume, red blood cell, white blood cell, and hemoglobin values), serum total protein, albumin, globulin, aspartate amino transferase, alkaline phosphatase, and creatine phosphokinase due to supplementation of different amounts and sources of Se in lambs. Dietary Se supplementation significantly improved (P?<?0.001) glutathione peroxidase activity in blood. Furthermore, at the end of the trial, serum tri-iodothyronine (T3) amount also increased (P?<?0.05), while serum thyroxine (T4) amount decreased (P?<?0.05). Digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber increased (P?<?0.05) by Se yeast supplementation. It may be concluded that supplementation of Se in lambs had no significant effect on performance and blood hematology, but increased blood glutathione peroxidase activity and serum T3 amount and decreased serum T4 amount as compared to non-supplemented control lambs. Furthermore, Se yeast improved nutrient digestibility in lambs.  相似文献   

5.
Twenty male buffalo calves (8–9 months, 112.1 ± 7.69 kg) were divided into four groups of five animals in each and fed diets without (T1) or supplemented with 0.3 ppm selenium (Se) (T2), 0.3 ppm Se + 10 ppm copper (Cu) (T3), and 10 ppm Cu (T4) for 120 days during which blood samples were collected on day 0, 40, 80, and 120. Concentrations of glucose, total protein, urea, uric acid, and creatinine were similar in all the four groups, but the level of globulin was significantly (P < 0.01) increased in groups T2 and T3, leading to reduced levels of albumin and A:G ratio (P < 0.01) in these groups. The level of different serum enzymes viz. lactate dehydrogenase (LDH), alkaline phosphatase (ALP), glutamate pyruvate transaminase (SGPT), and glutamate oxaloacetate transaminase (SGOT) and hormones viz. T3, T4, testosterone and insulin and T4:T3 ratio were similar (P > 0.05) among the four groups. It was deduced that supplementation of 0.3 ppm Se and/or 10.0 ppm of Cu had no effect on blood metabolic profile in buffalo calves, except for an increased globulin level, indicating improved immunity status of these animals.  相似文献   

6.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

7.

The aim of this study was to investigate the effect of dietary supplementation with different sources of selenium and/or organic chromium on the growth performance, digestibility, lipid profile, and mineral content of hair, liver, and fore and hind limb of growing rabbits. A total of 150 weanling New Zealand White (NZW) male rabbits were randomly allotted to six dietary treatment groups: (1) basal diet (control group), (2) basal diet + 0.6 mg sodium selenite/kg diet, (3) basal diet + 0.6 mg selenium yeast/kg diet, (4) basal diet + 0.3 mg sodium selenite/kg diet + 0.3 mg selenium yeast/kg diet, (5) basal diet + 0.6 mg chromium yeast/kg diet + 0.6 mg selenium yeast/kg diet, (6) basal diet + 0.6 mg chromium yeast/kg diet. Only the combination between inorganic and organic selenium led to significant improvement in body weight, body weight gain, and feed conversion ratio. Carcass traits were not different in all groups. Selenium (Se) and chromium (Cr) were deposited in the tissues of rabbits fed diets supplemented with Se and Cr, respectively. Blood serum in both of selenium- and chromium-supplemented groups showed declined total cholesterol, triglycerides, and low-density lipoprotein (LDL). Group supplemented with organic chromium showed higher high-density lipoprotein (HDL) than the other groups. It could be concluded that using a mixture of inorganic and organic Se has a positive effect on the growth performance of growing rabbits. Both Se and Cr have hypocholesterolemic effect. Both of Se and Cr can be deposited in the meat and other tissues of rabbits and that improves meat quality which positively reflects on human acceptance. The combination between inorganic (0.3 mg sodium selenite/kg diet) and organic selenium (0.6 mg selenium yeast/kg diet) improved growth performance traits of growing rabbits.

  相似文献   

8.
The enrichment of meat with selenium is important to improve the intake of selenium by humans. The effects of supranutritional doses of sodium selenite or selenium-enriched yeast on performance, carcass characteristics and meat quality were evaluated using 63 Nellore cattle in a completely randomized design with two sources (sodium selenite and selenium-enriched yeast), three levels (0.3, 0.9 and 2.7 mg Se/kg DM) and control treatment (without addition of selenium). Final body weight (BW), average daily gain, dry matter intake and gain to feed ratio (G : F) at the end of 84 days of supplementation were not influenced by treatments (P>0.05). Values of pH, ribeye area, back fat thickness and marbling score were also not influenced by treatments (P>0.05). Dressing percentage was greater (P=0.02) in Nellore cattle supplemented with organic Se (58.70%) compared to animals supplemented with inorganic Se (57.94%). Hot carcass weight increased (P=0.05) with the increasing of Se levels in the diet. Colour, shear force (SF), cooking and drip loss remained unchanged (P>0.05); however thiobarbituric acid reactive substances was 15.51% higher with inorganic Se compared with organic Se. The selenium concentration in the meat of animals receiving organic selenium was higher (P<0.001) than that of animals receiving sodium selenite, at all levels (0.3; 0.9 and 2.7 mg/kg DM). The meat of animals receiving 2.7 mg of organic Se/kg of DM presented concentration of 372.7 μg Se/kg in the L.dorsi muscle, and the intake of 150 g of this meat by humans provides approximately 100% of the recommended Se intake (55 μg Se/day for adults). Therefore, the use of supranutritional doses of 2.7 mg Se/kg of DM, regardless of source, is a way of naturally producing selenium-enriched meat without compromising performance, carcass characteristics and quality of Nellore bovine meat.  相似文献   

9.
Twenty male buffalo calves (15 months, 200.2 ± 9.75) were divided into four groups of five animals in each and fed diets without (T1) or supplemented with 0.3 ppm selenium (Se) + 40 ppm zinc (Zn) (T2), 0.3 ppm Se + 40 ppm Zn + 10 ppm copper (Cu) (T3), and 40 ppm Zn + 10 ppm Cu (T4) for 120 days, during which blood samples were collected on days 0, 40, 80, and 120. Concentrations of glucose, total protein, albumin, globulin, urea, uric acid, and creatinine were similar in all the four groups. The level of different serum enzymes viz. lactate dehydrogenase, alkaline phosphatase, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, and hormones viz. T3, T4, testosterone and insulin were similar (P > 0.05) among the four groups but the ratio of T4/T3 was reduced (P < 0.05) in the groups (T2 and T3) where selenium was supplemented at 120th day of supplementation. It was deduced that supplementation of 0.3 ppm Se and/or 10.0 ppm of Cu with 40 ppm Zn had no effect on blood metabolic profile in buffalo calves, except the ratio of T4 and T3 hormone which indicates that selenium plays an important role in converting T4 hormone to T3 which is more active form of thyroid hormone.  相似文献   

10.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

11.
BackgroundHigher environmental temperature is a major abiotic stress factor for animals and human beings. The selenium (Se) is an important trace mineral having diverse health promoting effects under stress conditions. However, studies on dietary requirement of selenium under prolonged heat stress condition are lacking. Present study discern the effect of higher dietary Se levels on antioxidant, cytokine, haemato-biochemical profile, and immune response, and the selenoproteins mRNA expression in rats under prolonged heat stress (HS) condition.MethodsWeaned Wistar rats (4 wk age; 67.6 ± 1.53 g BW; n = 72) housed under thermoneutral (TN) or HS conditions and fed with purified diets containing three graded Se levels were divided in six experimental groups. The groups were 1) TN control with 138 ppb Se (TN_CON), 2) HS control with 138 ppb Se (HS_CON), 3) TN with higher Se @ 291 ppb (TN_Se1), 4) HS with higher Se @ 291 ppb (HS_Se1) 5) TN with higher Se @ 460 ppb (TN_Se2), 6) HS with higher Se @ 460 ppb (HS_Se2). Rats in all the six groups were maintained in TN environmental conditions (57.3 ± 0.22 temperature humidity index; THI) for initial 28 days period. Subsequently, rats of HS groups were exposed to 77.0 ± 0.11 THI for 6 h/d in a psychrometric chamber for last fourteen days.ResultsHigher dietary Se (291 and 460 ppb) significantly improved the blood hemoglobin concentration and reduced serum alanine aminotransferase activity of rats under HS conditions. The serum triiodothyronine and insulin levels were significantly higher in high dietary Se groups irrespective of the environmental conditions. Similarly, the serum reduced glutathione levels, and catalase and superoxide dismutase enzyme activity were increased and malondialdehyde levels were reduced in high dietary Se groups irrespective of stress conditions. The glutathione peroxidase (GPx) activity was significantly higher in 460 ppb dietary Se groups as compared to other groups. The serum pro-inflammatory cytokine interleukin (IL)− 1 was declined, whereas the anti-inflammatory cytokine IL-10 level was increased in high dietary Se fed rats under both HS and TN conditions with 460 ppb dietary Se groups showing pronounced effects. Further, there was heat stress- and dietary Se level dependent- up regulation in hepatic GPx and iodothyronine deiodinase-II mRNA expression and similar pattern was noticed in hepatic thioredoxin reductase mRNA expression. The selenoprotein-P mRNA expression was up regulated in 460 ppb Se fed HS group as compared to CON and Se1_C groups. High dietary Se improved the humoral immune response 7d after antigen inoculation under HS conditions whereas cell-mediated immune response was augmented in rats fed higher Se under TN condition.ConclusionIt is concluded that under prolonged heat stress conditions the dietary requirement of Se may be increased to 460 ppb for improving the antioxidant status and humoral immune response, cytokine levels, modulating the thyroid and insulin hormone, and the selenoproteins mRNA expression of rats.  相似文献   

12.
Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P < 0.05) the body weight gain (BWG), positively modulated the gut architecture and enhanced nutrient digestibility in both stater and finisher growth phases of broiler chickens. Birds fed on PBLM 4 g/kg (T3), and POLM 8 g/kg (T7) had significantly higher (P < 0.05) BWG with superior (P < 0.05) feed efficiency in the overall growth period. Chickens fed on diets T3 and T7 had longer (P < 0.05) villi for duodenum as well as for jejunum. Furthermore, the birds fed on supplementations T3 and T7 showed improved (P < 0.05) digestibility of ether extract (EE), and dry matter (DM) compared to the control group. However, least (P < 0.05) crude protein (CP) digestibility was recorded for T4. In conclusion, dietary supplementations of PBLM 4 g/kg and POLM 8 g/kg were positively modulated the intestinal microarchitecture with enhanced nutrient digestibility, resulted in maximum body weight gain, thus improved the growth performance of broiler chickens.  相似文献   

13.
The aim of the present study was to evaluate the effects of selenium supplementation on thyroid hormone metabolism and selenoenzyme activities in lambs. Twelve 20-d-old male lambs were assigned to one of two diets: A (0.11 ppm Se) and B (supplemented with 0.2 ppm selenium as sodium selenite). Blood samples were collected weekly for the determination of T3, T4, and selenium levels. The response to thyrotropin-releasing hormone (TRH) challenge was estimated at the 11th and 20th wk. Animals were slaughtered at wk 20 and tissues were collected for enzyme determination. Plasma selenium concentration was significantly higher in supplemented lambs (p<0.001). Plasma T3 and T4 levels remained similar in both groups. Type I deiodinase activity (ID-I) was decreased in the liver (p<0.05) and increased in the pituitary (p<0.01) of supplemented animals. No ID-I activity was detected in the thyroid. Pituitary type II deiodinase activity (ID-II) remained unchanged. The response to TRH challenge did not differ between the two groups for both challenges, but in group B, the second TRH challenge (20th wk) resulted in a significantly higher T3 response compared to the first one (11th wk) (p<0.05). In conclusion, the lack of effects of Se supplementation on thyroid hormone metabolism demonstrates that enzyme activity is homeostatically controlled and selenium is incorporated in that order to ensure the maintenance of thyroid hormone homeostasis.  相似文献   

14.
《Small Ruminant Research》2010,91(1-3):170-173
Two experiments were conducted to study the effects of different levels of dietary cobalt on performance, plasma and rumen metabolites and nutrient digestibility in Mehraban male lambs. Experiment 1: 28, 8–9-month-old lambs were randomly divided into four groups. Animals were fed a basal diet containing 0.088 mg Co/kg DM and were supplied with 0 (control), 0.25, 0.50, or 1.00 mg Co/kg DM as reagent grade CoSO4·7H2O. The experiment lasted for 70 days. Experiment 2: four lambs from each group in Experiment 1 were randomly allocated to the individual metabolic crates to measure the effects of dietary Co on nutrient digestibility. Final body weight, average daily gain and gain efficiency were higher (p < 0.05) in the group supplemented with 0.50 mg Co/kg DM compared to other groups. Plasma glucose and vitamin B12 concentrations increased (p < 0.05) at all levels of Co supplementation on day 68 of the experiment and for vitamin B12 were higher (p < 0.05) at 0.50 and 1.00 mg Co/kg DM compared to 0.25 mg Co/kg DM. There was no significant difference among treatments for TVFA and ruminal fluid pH. Digestibility of dry matter, organic matter, crude protein and neutral detergent fiber increased (p < 0.05) by Co supplementation, but did not differ among Co supplied treatments. The obtained results showed that lambs fed the control diet containing 0.088 mg Co/kg DM had a reduced appetite and gained less than the supplemented animals, suggesting that the level of 0.088 mg Co/kg DM was inadequate for normal growth of Mehraban male lambs, and a total level of 0.58 mg Co/kg DM might be optimum level for enhancing performance.  相似文献   

15.
Forty weaned male guinea pigs of 208.20±6.62 g mean body weight were divided into 4 groups of 10 animals in a randomized block design. All of the guinea pigs were fed a basal diet [25% ground maize hay, 30% ground maize grain, 22% ground chickpea (Cicer arietinum L.), 9.5% deoiled rice bran, 6% soybean meal, 6% fish meal, 1.45% mineral supplement (without Zn) and 0.05% ascorbic acid] and available green fodder. Group I served as the control (no Zn supplementation), whereas 20 ppm Zn was added in the diet in groups II, III, and IV either as zinc sulfate (ZnSO4), zinc amino acid complex (ZAAC), and ZnSO4 + ZAAC in equal parts, respectively. Experimental feeding lasted for 70 d, including a 3-d digestibility trial. Blood was collected through cardiac puncture from four animals in each group at d 0 and subsequently at the end of experimental feeding. After 40 d of experimental feeding, four animals from each group were injected with 0.4 mL of Brucella abortus cotton strain-19 vaccine to assess the humoral immune response of the animals. After 10 wk of study, four animals from each group were sacrificed to study the concentration of Zn, Cu, Co, Fe, and Mn in the liver, pancreas and spleen. Results revealed no significant difference in the feed intake, body weight gain, and digestibility of the nutrients, except for crude protein (CP) digestibility, which was significantly (p<0.05) lower in group IV. Although concentrations of serum glucose, Ca, and P and the albumin:globulin (A:G) ratio were similar in the different groups, the total protein, albumin, and serum alkaline phosphatase activity were higher in all of the Zn-supplemented groups on d 70. The serum Zn levels at the end of experimental feeding were significantly higher in groups II and III, whereas serum Mn levels were found to be significantly (p<0.05) higher in groups III and IV. The organ weights (as percentage of body weights) did not show any differences among the treatment groups. Although the Mn concentration was significantly (p<0.05) higher in the pancreas, the Cu concentration was significantly (p<0.05) reduced in the spleen in all of the Zn-supplemented groups. The humoral immune response (antibody titer values) on d 14 of vaccination was significantly (p<0.05) higher in all of the Zn-supplemented groups. It was concluded that the 20-ppm level of Zn in the diet might be adequate for growth and nutrient utilization in guinea pigs, but supplementation of 20-ppm zinc significantly improved the immune response and impact was more prominent with the ZAAC (organic source) compared to ZnSO4 (inorganic source).  相似文献   

16.
《Small Ruminant Research》2008,79(1-3):66-73
Thirty male post-weaned Muzafarnagari lambs, of about 3 months of age and similar body weight (18.47 ± 1.31 kg), were divided into 5 similar groups in order to observe the effect of graded levels of palm oil supplementation on growth, nutrient utilization, cost of feeding, carcass characteristics and meat quality under feedlot regimen. Lambs in different treatment groups were fed with concentrate mash supplemented with 0% (T1), 2.5% (T2), 5.0% (T3), 7.5% (T4) and 10% (T5) palm oil and gram straw (Cicer arietinum) ad libitum. The growth trial was continued for 12 weeks. A metabolism trial of 6 days collection was conducted after 60 days of experimental feeding. After 90 days of feeding, randomly selected three animals from each group were slaughtered according to standard procedure for assessment of carcass traits and meat quality. Separated thoracic portion of Longissimus thoracis muscle from each carcass was collected for analysis of moisture, protein and fat. Accelerated growth in lambs under T3 (P < 0.05) was observed as compared to other treatments with similar DM intake. Similarly, DM intake (kg)/kg gain was found most efficient (P < 0.01) in T3 and least efficient in 10% palm oil supplemented T5. Due to this, feed cost (rupees)/kg weight gain was calculated less (44.23) in T3 than other palm oil supplemented treatments. DM, CP, Ca and P intakes were similar in all treatment groups during metabolism trial. Intake ratio of Ca and P was recorded 3.68:1.00, 3.42:1.00, 3.37:1.00, 3.69:1.00 and 3.44:1.00 in T1 to T5 treatments, respectively. Water intake and water intake/kg DM intake was also similar in different treatment groups. OM digestibility was significantly higher (P < 0.01) in 2.5% palm oil supplemented T2 ration as compared to other treatments. DM, CP, EE, CF, NFE and P digestibilities were found similar among different treatment groups. TDN percentage in the feed increased from 60.16 (T1) to 66.17 (T5), which was mainly due gradual increase of palm oil in the diet, although the difference was non-significant. Whereas, DCP percentage in feed gradually depressed (P < 0.05) due to higher level of palm oil supplementation. Nitrogen retention (%) as percentage of N-absorbed was significantly higher (P < 0.05) in palm oil supplemented groups than control T1, being highest in T3 and T4. This could be the reason for higher body weight gain in T3 and T4. Dressing and meat percentages (empty weight basis) ranged from 52.00 (T4) to 55.06 (T2) and 58.10 (T2) to 62.27 (T5), respectively, however, the differences were similar. Muscle fat% (DM basis) increased (P < 0.01) from 19.84 (T1) to 28.94 (T5) due to palm oil addition. Meat protein% (DM basis) remained unaffected due to these treatments, which ranged from 59.95 (T1) to 70.47 (T2). Result indicates that addition of 5% palm oil in concentrate mixture improved growth performance and feed conversion efficiency of weaned Muzafarnagari lambs keeping the quality of meat unaffected.  相似文献   

17.
Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 μg Se/g) or supplemented rats with graded levels of dietary Se (0–0.3 μg Se/g) as Na2SeO3 for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 μg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.  相似文献   

18.
The purpose of this 42-day study was to investigate the effects of excess dietary selenium on immune function by determining morphological changes of spleen and cell cycle of splenocyte. Three hundred 1-day-old avian broilers were fed on a basic diet (0.2 mg/kg selenium) or the same diet amended to contain 1, 5, 10, and 15 mg/kg selenium (Se) supplied as sodium selenite (n = 60/group). Anatomically, the spleens were shrinked in volume with pallecent color. Histopathologically, lymphopenia in splenic nodules and periarterial lymphatic sheaths and congestion of the red pulp were observed in 5, 10, and 15 mg/kg Se group. By flow cytometry method, the percentage of G0/G1 phase splenocytes was significantly increased, whereas the percentages of S phase and G2+M phase splenocytes and the proliferation index were markedly decreased in 5, 10, and 15 mg/kg Se groups when compared with those of 0.2 mg/kg group. The results confirmed that excess dietary Se as sodium selenite in the range of 5∼15 mg/kg caused growth retardation of spleen by cell cycle blockage in young chickens.  相似文献   

19.
BackgroundSelenium (Se) plays a beneficial role in the physiological function of humans and animals. Selenium polysaccharide, improving enzyme activity and regulating immunity, is the extraction from selenium-rich plants or mushrooms. This study aimed to evaluate the effect of selenium polysaccharide from selenium-enriched Phellinus linteus on the antioxidative ability, immunity, serum biochemistry, and production performance of laying hens.MethodsThree hundred sixty adult laying hens were randomly assigned to 4 groups. The four groups were divided as follows: CK (control group), PS group (4.2 g/kg polysaccharide), Se group (0.5 Se mg/kg), and PSSe group (4.2 g/kg with 0.5 Se mg/kg, Selenium polysaccharide).ResultsAfter the 8 weeks, the hens were sampled and the antioxidant ability(total antioxidant (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), and Nitric Oxide (NO)), immunity(Interleukin-2(IL-2), Immunoglobulin M(IgM), Immunoglobulin A(IgA), Immunoglobulin G(IgG) and interferon-gamma (IFN-γ) and secretory Immunoglobulin A(sIgA)), serum biochemistry(total protein, triglycerides, total cholesterol, glucose, glutamic-pyruvictransaminase (ALT), and aspartate transaminase (AST)) and production performance were assessed. Compared with the control group, T-AOC, SOD, CAT, GSH, IL-2, IgM, IgA, sIgA, IgG, IFN-γ, total protein, average laying rate, average egg weight, and final body were significantly increased in the PS, Se, and PSSe groups, however, the MDA and NO, triglyceride, cholesterol, glucose, AST, ALT, average daily feed consumption, and feed conversion ratio were significantly decreased in the PS, Se, and PSSe groups. The PSSe group in the immune index, antioxidant ability and serum biochemistry was improved the highest.ConclusionThe result suggested that selenium polysaccharide from selenium-enriched Phellinus linteus can enhance the antioxidant ability and immunity, change serum biochemistry, providing a new method for improving the production performance of laying hens.  相似文献   

20.
This study was aimed to assess the protective effect of sodium selenite on the ileum mucosal immunologic injury induced by AFB1. One hundred eighty-one-day-old healthy male Avian broilers were divided into four groups of three replicates and 15 birds per replicate and fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se (+Se group), and 0.3 mg/kg AFB1?+?0.4 mg/kg Se (AFB1?+?Se group) respectively. The numbers of IgA+ cells of ileum were determined by immunohistochemistry as well as the contents of sIgA, IgA, IgG, and IgM in the mucosa of ileum by ELISA. Compared with those in the control group, the numbers of IgA+ cells as well as the sIgA, IgA, IgG, and IgM contents were decreased in the AFB1 group. However, compared with those in the AFB1 group, the numbers of IgA+ cells as well as the sIgA, IgA, IgG, and IgM contents were increased in the AFB1?+?Se group, and these data had no difference between AFB1?+?Se group and control group. It was concluded that 0.3 mg/kg AFB1 could reduce the humoral immune function of the ileum mucosa, but 0.4 mg/kg supplemented dietary selenium could protect the mucosal humoral immune function from AFB1-induced impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号