首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixotrophy in planktonic protists: an overview   总被引:9,自引:0,他引:9  
1. An overview is provided of the role of mixotrophic protists in plankton communities. Consideration of the importance of phagotrophy in the evolution of photosynthetic eucaryotes suggests that mixotrophy as a nutritional strategy can arise rather readily.
2. Mixotrophic protists actually present a spectrum of nutritional strategies. However, recognition of distinct groups of mixotrophs based on nutritional behaviour facilitates consideration of their functional role and of competitive interactions with other types of planktonic protists.
3. Consideration of the costs and benefits of mixotrophy as a nutritional strategy allows the development of several empirical predictions about the probable outcome of resource competition between mixotrophs and obligate phototrophs or phagotrophs. Existing results from laboratory and field experiments allow some of these predictions to be evaluated.
4. These results indicate that, under specified conditions, mixotrophs should represent an important link in the flux of materials through planktonic food webs. However, quantifying these fluxes remains a challenge for the future.  相似文献   

2.
Mixotrophic Protists In Marine and Freshwater Ecosystems   总被引:4,自引:0,他引:4  
ABSTRACT Some protists from both marine and freshwater environments function at more than one trophic level by combining photosynthesis and panicle ingestion. Photosynthetic algae from several taxa (most commonly chrysomonads and dinoflagellates) have been reported to ingest living prey or nonliving particles, presumably obtaining part of their carbon and/or nutrients from phagocytosis. Conversely, some ciliates and sarcodines sequester chloroplasts after ingestion of algal prey. Plastid retention or "chloroplast symbiosis" by protists was first demonstrated < 20 years ago in a benthic foraminiferan. Although chloroplasts do not divide within these mixotrophic protists, they continue to function photosynthetically and may contribute to nutrition. Sarcodines and ciliates that harbor endosymbiotic algae could be considered mixotrophic but are not covered in detail here. the role of mixotrophy in the growth of protists and the impact of their grazing on prey populations have received increasing attention. Mixotrophic protists vary in their photosynthetic and ingestion capabilities, and thus, in the relative contribution of photosynthesis and phagotrophy to their nutrition. Abundant in both marine and freshwaters, they are potentially important predators of algae and bacteria in some systems. Mixotrophy may make a stronger link between the microbial and classic planktonic food webs by increasing trophic efficiency.  相似文献   

3.
At the 2002 SICB meeting in Anaheim, we brought together someof the leaders in terrestrial and marine phylogeography fora day-long symposium. This symposium combined presentationsfrom ten scientists whose question-driven research focuses ontesting hypotheses about patterns and processes in biogeographyin both vertebrate and invertebrate animals and including marine,terrestrial, and freshwater systems. The papers gathered herecover the breadth of the presentations. By explicitly seekingto combine marine and terrestrial workers into a single symposiumwe hoped that the different patterns and processes that predominatein major biomes and the different assumptions made by the workersin those areas would be highlighted.  相似文献   

4.
Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.  相似文献   

5.
6.
Costs, benefits and characteristics of mixotrophy in marine oligotrichs   总被引:4,自引:1,他引:3  
1. Oligotrich ciliates are an important part of most marine plankton communities. Mixotrophic (chloroplast-sequestering) oligotrichs, a common component of marine oligotrich communities, obtain fixed carbon from both photosynthesis as well as the ingestion of particulate food. Mixotrophy, in general, is often considered an adaptation permitting exploitation of food-poor environments. We examined the hypothesis that, among oligotrichs, mixotrophs may be at a disadvantage relative to heterotrophs in food-rich conditions in a nutrient-enrichment experiment. We compared growth responses of mixotrophic and heterotrophic oligotrichs in natural communities from the N.W. Mediterranean Sea in microcosms with daily nutrient additions resulting in increases in nanoflagellates and Synechococcus populations. The results indicated that both mixotrophic and heterotrophic oligotrichs respond to prey increases with rapid growth (μ=1.2 d−1).
2. To examine the hypothesis that the proportion of mixotrophic to heterotrophic oligotrichs changes with the trophic status of a system, increasing with oligotrophy, we examined data from a variety of marine systems. Across systems ranging in chlorophyll concentration from about 0.1 to 40 μg L−1, oligotrich cell concentrations are correlated with chlorophyll concentrations, and mixotrophs are a consistent component of oligotrich communities, averaging about 30% of oligotrich cell numbers.
3. We discuss the costs, benefits and possible uses of mixotrophy in marine oligotrichs and suggest that mixotrophy in marine oligotrichs is not closely linked to the exploitation of food-poor environments, but probably serves a variety of purposes.  相似文献   

7.
Significance of predation by protists in aquatic microbial food webs   总被引:31,自引:0,他引:31  
Predation in aquatic microbial food webs is dominated by phagotrophic protists, yet these microorganisms are still understudied compared to bacteria and phytoplankton. In pelagic ecosystems, predaceous protists are ubiquitous, range in size from 2 μm flagellates to >100 μm ciliates and dinoflagellates, and exhibit a wide array of feeding strategies. Their trophic states run the gamut from strictly phagotrophic, to mixotrophic: partly autotrophic and partly phagotrophic, to primarily autotrophic but capable of phagotrophy. Protists are a major source of mortality for both heterotrophic and autotrophic bacteria. They compete with herbivorous meso- and macro-zooplankton for all size classes of phytoplankton. Protist grazing may affect the rate of organic sinking flux from the euphotic zone. Protist excretions are an important source of remineralized nutrients, and of colloidal and dissolved trace metals such as iron, in aquatic systems. Work on predation by protists is being facilitated by methodological advances, e.g., molecular genetic analysis of protistan diversity and application of flow cytometry to study population growth and feeding rates. Examples of new research areas are studies of impact of protistan predation on the community structure of prey assemblages and of chemical communication between predator and prey in microbial food webs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The sensitivity to ultraviolet radiation (UVR, 280-400 nm) of ten species of freshwater and marine phagotrophic protists was assessed in short-term (4 h) laboratory experiments. Changes in the motility and morphology of the cells, as well as direct quantification of DNA damage, were evaluated. The net amount of cyclobutane pyrimidine dimers formed after exposure of the organisms to a weighted dose (Setlow DNA normalized at 300 nm) of 1.7 kJ m(-2) was quantified by an immunoassay using a monoclonal specific antibody directed against thymine dimers (T<>Ts). This is the first application of this method to aquatic protists. The results indicated that marine and freshwater heterotrophic nanoflagellates, representatives from the order Kinetoplastida (Bodo caudatus and Bodo saltans, respectively) accumulate significantly higher DNA damage than protists representatives of the orders Chrysomonadida, Cryptomonadida or Scuticociliatida. The high proportion of A:T bases in the unique kinetoplast DNA, may explain the higher accumulation of T<>Ts found in bodonids. Experiments made with B. saltans to study the dynamics of DNA damage accumulation in the presence of UVR and photorepairing light, indicated that the mechanisms of DNA repair in this species are very inefficient. Furthermore, the dramatic changes observed in the cell morphology of B. saltans probably compromise its recovery. Our results show that sensitivity to UVR among aquatic phagotrophic protists is species-specific and that different cell targets are affected differently among species. While DNA damage in B. saltans was accompanied by motility reduction, altered morphology, and finally mortality, this was not observed in other bodonids as well as in the other species tested.  相似文献   

9.
Paleomicrobiological studies of terrestrial and freshwater protists are extremely rare in comparison with studies of eukaryotic microfossils from marine ecosystems. Using optical and electron microscopy (SEM-BSE) for hard substrates, we have examined protists trapped in Lower Cretaceous amber from Pe?acerrada (Alava, Spain). We present the earliest reasonably confident microfossils of three taxa: Excavata (Euglenozoa), that are similar to the extant genera Euglena and Phacus; Chlorophyceae identified as members of the genus Chlamydomonas, and finally, in the taxon Ciliophora (Chromalveolata), two ciliated protozoa identified as Colpoda (Class Colpodea) and Prorodon (Class Prostomatea). Morphological stasis is evident, and identification based on phenotypic traits indicates the existence of conservative phenotypes persisting over geological time scales.  相似文献   

10.
We describe a catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) protocol particularly suited to assess the phagotrophy of mixotrophic protists on prokaryotes, since it maintains cell and plastid integrity, avoids cell loss and egestion of prey, and allows visualization of labeled prey against plastid autofluorescence. This protocol, which includes steps such as Lugol's-formaldehyde-thiosulfate fixation, agarose cell attachment, cell wall permeabilization with lysozyme plus achromopeptidase, and signal amplification with Alexa-Fluor 488, allowed us to detect almost 100% of planktonic prokaryotes (Bacteria and Archaea) and, for the first time, to show archaeal cells ingested by mixotrophic protists.  相似文献   

11.
1. Mixotrophs are organisms which combine phototrophy and heterotrophy; such nutritional behaviour is widespread among protists. This ability to combine multiple modes of nutrition varies between species and is not related to their taxonomic grouping. A classification of mixotrophic protists, based on their behaviour, is proposed, dividing them into four groups.
2. Group A includes protists whose primary mode of nutrition is heterotrophy and where phototrophy is employed only when prey concentrations limit heterotrophic growth. In groups B, C and D phototrophy is the dominant mode of nutrition. In group B phagotrophy supplements growth when light is limiting, therefore ingestion of prey is inversely proportional to light intensity; in group C phagotrophy provides essential substances for growth and ingestion is proportional to light intensity; and group D includes those who have very low ingestion rates, ingesting prey only, for example, for cell maintenance during prolonged dark periods.
3. This classification is aimed towards predicting the impact of any particular mixotrophic protist on the aquatic food web, and how this impact may vary depending on the environmental conditions. A model representation of the four groups is discussed.  相似文献   

12.
1. Mixotrophs are organisms which combine phototrophy and heterotrophy; such nutritional behaviour is widespread among protists. This ability to combine multiple modes of nutrition varies between species and is not related to their taxonomic grouping. A classification of mixotrophic protists, based on their behaviour, is proposed, dividing them into four groups.
2. Group A includes protists whose primary mode of nutrition is heterotrophy and where phototrophy is employed only when prey concentrations limit heterotrophic growth. In groups B, C and D phototrophy is the dominant mode of nutrition. In group B phagotrophy supplements growth when light is limiting, therefore ingestion of prey is inversely proportional to light intensity; in group C phagotrophy provides essential substances for growth and ingestion is proportional to light intensity; and group D includes those who have very low ingestion rates, ingesting prey only, for example, for cell maintenance during prolonged dark periods.
3. This classification is aimed towards predicting the impact of any particular mixotrophic protist on the aquatic food web, and how this impact may vary depending on the environmental conditions. A model representation of the four groups is discussed.  相似文献   

13.
Recent observational studies form oligotrophic waters provide ample evidence that mixotrophic flagellates often account for the bulk of bacterivory. However, we lack a general framework that allows a mechanistic understanding of success of mixotrophs in the competition with heterotrophic bacterivores. This is especially needed for integrating mixotrophy in models of the microbial loop. Based on general tradeoffs linked to the combined resource use in mixotrophs (generalist versus specialist), we propose a concept where mixotrophs are favored by conditions of high light – low losses, corresponding to the situation found in the surface waters of oligotrophic oceans. Under such conditions, they can achieve positive net growth at very low resource levels, allowing simultaneous competition with specialized protists. Conversely, heterotrophic bacterivores and photoautotrophs should be especially favored in more productive and low‐light conditions. We show experimentally that the combined effect of light and loss rates (dilution) predicts the success of mixotrophic bacterivorous flagellates. Moreover, our results suggest that total bacterivory, contrary as seen in the traditional microbial loop concept, has a more intricate coupling to light.  相似文献   

14.
姚保民  曾青  张丽梅 《生物多样性》2022,30(12):22353-254
原生生物广泛分布在土壤和不同生境中, 其数量庞大、种类繁多, 在生态系统物质循环和能量流动以及维持土壤和植物健康中起着举足轻重的作用。与土壤其他生物类群相比, 原生生物分类体系和生态类型复杂, 分类鉴定困难且分子检测技术不够成熟, 目前对原生生物的认识相对不足。本文对当前原生生物的相关研究进展进行了总结和梳理, 系统阐述了原生生物的分类系统和营养功能群特征、土壤原生生物的多样性分布特征及影响因子, 重点介绍了原生生物群落在参与土壤养分循环、维持土壤和植物健康等中的功能作用, 并对未来的研究方向与应用前景进行了展望。对土壤原生生物的研究有助于我们深入认识土壤生物多样性资源, 并进行保护性地开发和利用, 维护土壤和生态系统健康。  相似文献   

15.
The use of small-subunit rRNA-based oligonucleotides as probes for detecting marine nanoplanktonic protists was examined with a ciliate (an Uronema sp.), a flagellate (a Cafeteria sp.), and mixed assemblages of protists from enrichment cultures and natural seawater samples. Flow cytometry and epifluorescence microscopy analyses demonstrated that hybridizations employing fluorescein-labeled, eukaryote-specific probes intensely stained logarithmically growing protists, whereas these same protist strains in late stationary growth were barely detectable. The fluorescence intensity due to probe binding was significantly enhanced by the use of probes end labeled with biotin, which were detected by fluorescein-labeled avidin. The degree of signal amplification ranged from two- to fivefold for cultured protists in both logarithmic and stationary growth phases. Mixed assemblages of heterotrophic protists from enrichment cultures were also intensely labeled by rRNA-targeted oligonucleotide probes by the biotin-avidin detection system. Protists in late stationary growth phase and natural assemblages of protists that were otherwise undetectable when hybridized with fluorescein-labeled probes were easily visualized by this approach. In the latter samples, hybridization with multiple, biotin-labeled probes was necessary for detection of naturally occurring marine protists by epifluorescence microscopy. The signal amplification obtained with the biotin-avidin system should increase the utility of rRNA-targeted probes for identifying protists and facilitate characterization of the population structure and distribution of protists in aquatic environments.  相似文献   

16.
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2. We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.  相似文献   

17.
Changes in the level of heat shock proteins (HSP) in cells of freshwater protists, amoebae Amoeba proteus and ciliates Paramecium jenningsi, in response to changes in the environmental salinity were investigated. Changes in salinity levels were considered as a stress factor. The immunoblotting method revealed a polypeptide antigen cross-reacting with antibodies against bovine HSP70 in total protein extracts of both intact cells and cells subjected to salinity stress. The same polypeptide antigen was revealed in A. proteus cells subjected to heat shock. Therefore, it may be supposed that the polypeptide revealed after salinity shock is a heat shock protein related to the vertebrate HSP70. Under the impact of stress factor, well acclimated protists mostly spend their own previously accumulated HSP70. A conclusion is made that freshwater protists, living under conditions of increased salinity, appear to be preadapted to changes in environmental factors.  相似文献   

18.
Mixotrophy is the ability to combine autotrophic and heterotrophic modes of nutrition. It is widely spread in a variety of microorganisms including such important plankton groups as dinoflagellates and cyanobacteria. In marine ecosystems, mixotrophy complicates our concept of the flow of materials and energy and therefore has been thoroughly studied for recent decades. Nevertheless, the exact data on the auto/heterotrophy balance during mixotrophic growth are still lacking, mainly due to insufficient knowledge of physiological and molecular grounds of this phenomenon. In this review, we address the ecological and cytophysiological aspects of the problem of mixotrophy in microorganisms as well as discuss possible causes of the relatively slow progress in this field.  相似文献   

19.
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.  相似文献   

20.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号