首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild‐type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.  相似文献   

2.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

3.
Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin-proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.  相似文献   

4.
《朊病毒》2013,7(4):269-276
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.  相似文献   

5.
Huntington''s Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice.  相似文献   

6.
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.  相似文献   

7.
Huntington disease (HD) is a fatal progressive neurodegenerative disorder associated with expansion of a CAG repeat in the first exon of the gene coding the protein huntingtin (htt). Although the feasibility of RNA interference (RNAi)-mediated reduction of htt expression to attenuate HD-associated symptoms is suggested, the effects of post-symptomatic RNAi treatment in the HD model mice have not yet been certified. Here we show the effects of recombinant adeno-associated virus (rAAV)-mediated delivery of RNAi into the HD model mouse striatum after the onset of disease. Neuropathological abnormalities associated with HD, such as insoluble protein accumulation and down-regulation of DARPP-32 expression, were successfully ameliorated by the RNAi transduction. Importantly, neuronal aggregates in the striatum were reduced after RNAi transduction in the animals comparing to those at the time point of RNAi transduction. These results suggest that the direct inhibition of mutant gene expression by rAVV would be promising for post-symptomatic HD therapy.  相似文献   

8.
Huntington disease (HD) is caused by expansion of a polyglutamine (polyQ) domain in the protein known as huntingtin (htt), and the disease is characterized by selective neurodegeneration. Expansion of the polyQ domain is not exclusive to HD, but occurs in eight other inherited neurodegenerative disorders that show distinct neuropathology. Yet in spite of the clear genetic defects and associated neurodegeneration seen with all the polyQ diseases, their pathogenesis remains elusive. The present review focuses on HD, outlining the effects of mutant htt in the nucleus and neuronal processes as well as the role of cell-cell interactions in HD pathology. The widespread expression and localization of mutant htt and its interactions with a variety of proteins suggest that mutant htt engages multiple pathogenic pathways. Understanding these pathways will help us to elucidate the pathogenesis of HD and to target therapies effectively.  相似文献   

9.
Huntington's disease (HD) is caused by an expansion of a polyglutamine (polyQ) tract within huntingtin (htt) protein. To examine the cytotoxic effects of polyQ-expanded htt, we overexpressed an enhanced green fluorescent protein (EGFP)-tagged N-terminal fragment of htt with 150 glutamine residues (Nhtt150Q-EGFP) in Aplysia neurons. A combined confocal and electron microscopic study showed that Aplysia neurons expressing Nhtt150Q-EGFP displayed numerous abnormal aggregates (diameter 0.5-5 microm) of filamentous structures, which were formed rapidly (approximately 2 h) but which were sustained for at least 18 days in the cytoplasm. Furthermore, the overexpression of Nhtt150Q-EGFP in sensory cells impaired 5-hydroxytryptamine (5-HT)-induced long-term synaptic facilitation in sensori-motor synapses without affecting basal synaptic strength or short-term facilitation. This study demonstrates the stability of polyQ-based aggregates and their specific effects on long-term synaptic plasticity.  相似文献   

10.
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD(140Q/140Q)). Primary HD(140Q/140Q) cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD(140Q/140Q) neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD(140Q/140Q) neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.  相似文献   

11.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.  相似文献   

12.
13.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.  相似文献   

14.
In Huntington's disease (HD), as in the rest of CAG triplet-repeat disorders, the expanded polyglutamine (polyQ)-containing proteins form intraneuronal fibrillar aggregates that are gathered into inclusion bodies (IBs). Since IBs contain ubiquitin and proteasome subunits, it was proposed that inhibition of proteasome activity might underlie pathogenesis of polyQ disorders. Recent in vitro enzymatic studies revealed the inability of eukaryotic proteasomes to digest expanded polyQ, thus suggesting that occasional failure of polyQ to exit the proteasome may interfere with its proteolytic function. However, it has also recently been found that in vitro assembled aggregates made of synthetic polyQ fail to inhibit proteasome activity. Because synthetic polyQ aggregates lack the post-translational modifications found inside affected neurons, such as poly ubiquitylation, we decided to study the effect of mutant huntingtin (htt) aggregates isolated from the Tet/HD94 mouse model and from human HD brain tissue. Here, we show that isolated ubiquitylated filamentous htt aggregates, extracted from IBs by a previously reported method, selectively inhibited the in vitro peptidase activity of the 26S but not of the 20S proteasome in a non-competitive manner. In good agreement, immuno-electron microscopy revealed a direct interaction of htt filaments with the 19S ubiquitin-interacting regulatory caps of the 26S proteasome. Here, we also report a new method for isolation of IBs based on magnetic sorting. Interestingly, isolated IBs did not modify proteasome activity. Our results therefore show that mutant htt filamentous aggregates can inhibit proteasome activity, but only when not recruited into IBs, thus strengthening the notion that IB formation is protective by neutralizing toxicity of dispersed filamentous htt aggregates.  相似文献   

15.
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 N-terminal amino acids of htt have been shown to further modulate aggregation. Additionally, these 17 amino acids appear to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-lengths (35Q, 46Q, 51Q, and myc-53Q) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. Furthermore, the addition of an N-terminal myc-tag to the htt exon1 fragments impeded the interaction of htt with the bilayer.  相似文献   

16.
BACKGROUND: Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS: High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS: In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS: These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.  相似文献   

17.
18.
Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575-850 kDa in control brain and at 650-885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1-17)) and increased when lysates were treated with denaturants (SDS, 8 M urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670-880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43-50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 M urea + DTT. Native full-length mutant htt in embryonic HD(140Q/140Q) mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer.  相似文献   

19.
Aggregation of disease proteins is believed to be a central event in the pathology of polyglutamine diseases, whereas the relationship between aggregation and neuronal death remains controversial. We investigated this question by expressing mutant huntingtin (htt) with a defective adenovirus in different types of neurons prepared from rat cerebral cortex, striatum or cerebellum. The distribution pattern of inclusions is not identical among different types of primary neurons. On day 2 after infection, cytoplasmic inclusions are dominant in cortical and striatal neurons, whereas at day 4 the ratio of nuclear inclusions overtakes that of cytoplasmic inclusions. Meanwhile, nuclear inclusions are always predominantly present in cerebellar neurons. The percentage of inclusion-positive cells is highest in cerebellar neurons, whereas mutant htt induces cell death most remarkably in cortical neurons. As our system uses htt exon 1 protein and thus aggregation occurs independently from cleavage of the full-length htt, our observations indicate that the aggregation process is distinct among different neurons. Most of the neurons containing intracellular (either nuclear or cytoplasmic) aggregates are viable. Our findings suggest that the process of mutant htt aggregation rather than the resulting inclusion body is critical for neuronal cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号