首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重组人血小板生成素(rhTPO)是一种能促进巨核系祖细胞增殖、分化生成血小板的造血因子,研究表明它能促进射线照射小鼠造血功能恢复,前期工作证明rhTPO早期干预可显著提高致死剂量照射小鼠的活存率.本文以7.0Gy照射恒河猴为重度骨髓型急性放射病(ARS)模型,研究了rhTPO早期干预对重症ARS的治疗作用,并与WR2721和"500"的辐射防护作用进行了比较,结果发现rhTPO早期干预可明显促进ARS猴造血功能恢复,改善ARS猴症状,简化对症治疗措施,提高重度骨髓型ARS猴活存率,其对重度骨髓型ARS的防治作用优于现有的辐射防护药WR2721和"500",有望开发成安全有效的新型辐射防治药物.  相似文献   

2.
δ-Tocotrienol (DT3), a vitamin E isoform, is associated with strong antioxidant and immunomodulatory properties. We confirmed the potent antioxidant activity in membrane systems and showed that DT3 is an effective radiation protector and mitigator. DT3 (4 μM, P < 0.001) inhibited lipid peroxidation in mouse liver microsomes and nitric oxide (NO) formation (20 μM DT3, P < 0.01) in RAW264.7 cells, a murine alveolar macrophage line. In CD2F1 mice exposed to lethal total-body radiation from a (60)Co γ-radiation source, a single subcutaneous (s.c.) injection of DT3 before or after irradiation produced a significant increase in 30-day survival. DT3 was effective from 18.75 to 300 mg/kg (--24 h, P < 0.001). A single dose of 150 or 300 mg/kg DT3 given 24 h before irradiation (radioprotection) resulted in dose reduction factors (DRFs) of 1.19 and 1.27, respectively (P < 0.001). Further, DT3 reduced radiation lethality when administered 2, 6 or 12 h after irradiation, and 150 mg/kg DT3 administered 2 h after exposure conferred a DRF of 1.1 (mitigation). The optimum schedule of 300 mg/kg DT3 24 h prior to 7 Gy significantly reduced pancytopenia compared to irradiated controls (P < 0.05). The large therapeutic potential of and multi-lineage hematopoietic recovery for DT3 warrants further studies.  相似文献   

3.
The detonation of a nuclear weapon or a nuclear accident represent possible events with significant exposure to mixed neutron/γ-radiation fields. Although radiation countermeasures generally have been studied in subjects exposed to pure photons (γ or X rays), the mechanisms of injury of these low linear energy transfer (LET) radiations are different from those of high-LET radiation such as neutrons, and these differences may affect countermeasure efficacy. We compared 30-day survival in mice after varying doses of pure γ and mixed neutron/γ (mixed field) radiation (MF, Dn/Dt = 0.65), and also examined peripheral blood cells, bone marrow cell reconstitution, and cytokine expression. Mixed-field-irradiated mice displayed prolonged defects in T-cell populations compared to mice irradiated with pure γ photons. In mouse survival assays, the growth factor granulocyte colony-stimulating factor (G-CSF) was effective as a (post-irradiation) mitigator against both γ-photons and mixed-field radiation, while the thrombopoietin (TPO) mimetic ALXN4100TPO was effective only against γ irradiation. The results indicate that radiation countermeasures should be tested against radiation qualities appropriate for specific scenarios before inclusion in response plans.  相似文献   

4.
In vivo postirradiation protection by a vitamin E analog, alpha-TMG   总被引:2,自引:0,他引:2  
The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.  相似文献   

5.
Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.  相似文献   

6.
In vivo radioprotection by alpha-TMG: preliminary studies   总被引:2,自引:0,他引:2  
alpha-TMG is a novel water-soluble derivative of Vitamin E that has shown excellent antioxidant activity. The parent compound has demonstrated protection against radiation induced chromosomal damage in vivo. Hence, the preliminary experiments to determine the radioprotective activity of alpha-TMG were carried out in adult Swiss albino mice. Acute toxicity of the drug was studied taking 24h, 72 h and 30 day mortality after a single intraperitoneal injection of 500-2000 mg/kg body weight of the drug. The drug LD(50) for 24h and 72 h/30 day survival were found to be 1120 and 1000 mg/kg body weight, respectively. The optimum time of drug administration and drug dose-dependent effect on in vivo radiation protection of bone marrow chromosomes was studied in mice. Injection of 600 mg/kg of the drug 15 min before or within 5, 15 or 30min after 3Gy whole body gamma radiation resulted in a significant decrease in the aberrant metaphases percent at 24h post-irradiation; the maximum effect was seen when the drug was given immediately after irradiation. Injection of 200-800 mg/kg TMG within 5 min of irradiation with 3 Gy produced a significant dose-dependent reduction in the radiation induced percent aberrant metaphases and in the frequency of micronucleated erythrocytes at 24h after exposure, with a corresponding decrease in the different types of aberrations. The optimum dose for protection without drug toxicity was 600 mg/kg body weight. At this dose, TMG produced 70 and >60% reduction in the radiation induced percent aberrant metaphases and micronucleated erythrocytes, respectively. The high water solubility and effectiveness when administered post-irradiation favor TMG as a likely candidate for protection in case of accidental exposures.  相似文献   

7.
Ethyl pyruvate (EP), a simple aliphatic ester of pyruvic acid, has been shown to improve survival and ameliorate organ damage in animal models of sepsis, ischemia/reperfusion injury and hemorrhagic shock. Incubating IL3-dependent mouse hematopoietic progenitor cell 32Dcl3 cells before or after irradiation with 10 mM EP increased resistance to radiation as assessed by clonogenic radiation survival curves, decreased release of mitochondrial cytochrome C into the cytoplasm, and decreased apoptosis. EP inhibited radiation-induced caspase 3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in 32Dcl3 cells in a concentration-dependent fashion. EP was given i.p. to C57BL/6NHsd mice irradiated with 9.75 Gy total-body irradiation (TBI). This treatment significantly improved survival. The survival benefit was apparent irrespective of whether treatment with EP was started 1 h before TBI and continued for 5 consecutive days after TBI or the compound was injected only 1 h before or only for 5 days after TBI. In all of the in vitro and in vivo experiments, ethyl lactate, an inactive analogue of EP, had no detectable radioprotective or mitigating effects. EP may be an effective radioprotector and mitigator of the hematopoietic syndrome induced by TBI.  相似文献   

8.
The influence of 3-aminobenzamide (3-AB) on the radiation response of the stem spermatogonia of the CBA mouse has been investigated. Doses of 3-AB from 66 to 450 mg/kg, administered 1 h before irradiation, significantly enhanced stem-cell killing. Enhancement was observed when 3-AB (450 mg/kg) was given up to 5 h before, but not if administered after, irradiation. When radiation was delivered at a lower dose rate (5 cGy/min compared to 180 cGy/min) significant dose sparing was achieved for radiation alone. Pretreatment with 3-AB resulted in slightly less enhancement at the low dose rate than at the high. Split-dose studies (9 Gy total dose) with radiation alone resulted in a recovery ratio of 1.4-1.5. Administration of 3-AB before the first dose resulted in a similar recovery ratio, but if given immediately after the first dose the ratio was smaller. Pretreatment of mice with the radiosensitizer RSU-1069 indicated that at least some of the stem cells were radiobiologically hypoxic. We suggest therefore that the enhancement of spermatogonial stem-cell killing by 3-AB is not entirely due to inhibition of repair processes but may also involve modification of the oxygen status of the testis.  相似文献   

9.
Multi-endpoint biological monitoring of phosphine workers   总被引:1,自引:0,他引:1  
5-Aminosalicylic acid (5ASA), a prescribed drug for ulcerative colitis, is a potent scavenger of oxygen-derived free radicals. The present study was undertaken to ascertain its ability to protect against radiation-induced damage. The drug dose-dependent effect, optimum time of drug administration and radiation dose-dependent effect (0-4 Gy) on in vivo radiation protection against micronuclei induction in polychromatic erythrocytes (PCE) and normochromatic erythrocytes (NCE) were studied in the bone marrow of mice. Intraperitoneal injection of 10-125 mg/kg of the drug 30 min before whole body irradiation with 3 Gy produced a significant reduction in the frequency of micronucleated erythrocytes at 24 h after exposure. The optimum dose for protection without drug toxicity was 25 mg/kg body weight. Injection of 25 mg/kg of the drug 60 or 30 min before or within 15 min after 3 Gy whole body gamma-irradiation resulted in a significant decrease in the radiation-induced PCE and NCE with micronuclei (MPCE and MNCE) and an increase in the ratio of PCE to NCE (P/N), at 24 h post-irradiation. Maximum effect was seen when the drug was administered 30 min before irradiation. Therefore, to study the radiation dose-response, mice were pre-treated with 25 mg/kg of 5ASA 30 min before 1-4 Gy of gamma-irradiation. Radiation increased the MN frequency linearly (r(2)=0.99) with dose. Pre-treatment with 5ASA significantly reduced the MN counts to 40-50% of the radiation (RT) alone values, giving a dose modification factor (DMF) of 2.02 (MPCE) and 2.53 (MNCE). Irradiation resulted in a dose-dependent decline in the P/N ratio at all the doses of radiation studied. 5ASA produced a significant increase in the P/N ratio from that of irradiated controls, at all doses of radiations tested. These results show that 5ASA protect mice against radiation-induced MN formation and mitotic arrest.  相似文献   

10.
The efficacy of the amphipathic ketoamide calpain inhibitor SNJ‐1945 in attenuating calpain‐mediated degradation of the neuronal cytoskeletal protein α‐spectrin was examined in the controlled cortical impact (CCI) traumatic brain injury (TBI) model in male CF‐1 mice. Using a single early (15 min after CCI‐TBI) i.p. bolus administration of SNJ‐1945 (6.25, 12.5, 25, or 50‐mg/kg), we identified the most effective dose on α‐spectrin degradation in the cortical tissue of mice at its 24 h peak after severe CCI‐TBI. We then investigated the effects of a pharmacokinetically optimized regimen by examining multiple treatment paradigms that varied in dose and duration of treatment. Finally, using the most effective treatment regimen, the therapeutic window of α‐spectrin degradation attenuation was assessed by delaying treatment from 15 min to 1 or 3 h post‐injury. The effect of SNJ‐1945 on α‐spectrin degradation exhibited a U‐shaped dose–response curve when treatment was initiated 15 min post‐TBI. The most effective 12.5 mg/kg dose of SNJ‐1945 significantly reduced α‐spectrin degradation by ~60% in cortical tissue. Repeated dosing of SNJ‐1945 beginning with a 12.5 mg/kg dose did not achieve a more robust effect compared with a single bolus treatment, and the required treatment initiation was less than 1 h. Although calpain has been firmly established to play a major role in post‐traumatic secondary neurodegeneration, these data suggest that even brain and cell‐permeable calpain inhibitors, when administered alone, do not show sufficient cytoskeletal protective efficacy or a practical therapeutic window in a mouse model of severe TBI. Such conclusions need to be verified in the human clinical situation.  相似文献   

11.
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.  相似文献   

12.
Meloxicam, a selective inhibitor of cyclooxygenase 2, a nonsteroidal anti-inflammatory drug with an improved side-effects profile in terms of gastrointestinal toxicity, has been found to stimulate hematopoiesis in whole-body gamma-irradiated mice. A distinct corroboration of this positive action of meloxicam is an enhancement of the recovery of hematopoietic progenitor cells committed to granulocyte-macrophage and erythroid development, which has been demonstrated in sublethally irradiated animals treated with meloxicam at a dose of 20 mg/kg administered intraperitoneally either singly 1 h before irradiation or repeatedly after radiation exposure. The results suggest that meloxicam can be added to the list of biological response modifiers that can be used in the treatment of hematopoietic damage induced by ionizing radiation.  相似文献   

13.
A single dose of DTC was administered, in a dose-range from 0.6 mg/kg to 25 mg/kg, to mice immunized with 10(8) sheep red cells (SRC). All doses strongly enhanced plaque-forming spleen cell (PFC) responses, when given either 18 h before, simultaneously to, 6 h or 24 h after SRC immunization. However, the higher levels of immunostimulation were attained by DTC doses above 5 mg/kg. DTC-induced immunopotentiation was not accompanied by untoward effects, such as acute toxicity, splenomegalia or modifcations in counts of viable spleen lymphocytes.  相似文献   

14.
The protective effects of 5,6,7,8-tetrahydroneopterin (NH4) against radiation injury in mice were studied. (C57BL/6xA/J)F1 (B6A) mice received a single whole-body irradiation dose of 200, 400, 700 or 800 cGy of X-rays. NH4 (30 mg/kg body weight) or phosphate-buffered saline (PBS) was injected intraperitoneally into irradiated mice 10 min before and after the irradiation and again after 6 h. All mice which received the 800 cGy radiation+PBS died between 8 and 11 days after the treatment. In contrast, those which also received NH4 demonstrated a significantly prolonged survival time and 40% lived more than 5 months. Total numbers of thymocytes and spleen cells on day 5 post-irradiation were dramatically reduced in line with the radiation dose. The survival was significantly enhanced by NH4 in treated mice. The proliferation of spleen cells in mice stimulated by concanavalin A (Con A) or lipopolysaccharide (LPS) was also greater in NH4 treated mice. The immune response of survivors 5 months after 800 cGy+NH4 treatments, against Con A, LPS, allogenic mouse, and sheep red blood cells had essentially recovered to the levels of normal mice. These results indicate that NH4 had an important role in modifying radiation injury.  相似文献   

15.
HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8-9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit-expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD(50/30)) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12-14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting hematopoiesis and recovery of immune functions and possibly gastrointestinal functions, likely through a network of interactions involving dendritic cells, osteoblasts, and soluble factors such as IL-12, IFN-γ, and cytoprotectant erythropoietin.  相似文献   

16.
The comparison was made of the protective (the administration 3 h before irradiation with a dose of 7.3 Gy) and therapeutic (the administration immediately and later after exposure) effects of soya oil (150 mg/kg) and oil solution of ubiquinone-9 (100-200 mg/kg) on survival of exposed rats. It was shown that soya oil and ubiquinone-9 increased the survival rate of rats when administered before and, to a lesser extent, immediately after irradiation. Corn oil administered immediately after exposure increased the survival rate as well. DMF for the therapeutic effect of soya oil solution of ubiquinone-9 was 1.08.  相似文献   

17.
The survival of B6D2F1 female mice exposed to lethal doses of fission neutron radiation is increased when trehalose dimycolate (TDM) preparations are given either 1 h after exposure or 1 day before exposure to radiation. TDM in an emulsion of squalene, Tween 80, and saline was the most effective formulation for increasing the 30-day survival of mice when given 1 day before (90%) or 1 h after (88%) exposure to radiation. An aqueous suspension of a synthetic analog of TDM was less effective at increasing 30-day survival (60%) when given 1 day prior to radiation exposure and not effective when given 1 h after radiation. Mice receiving a sublethal dose (3.5 Gy) of fission neutron radiation and either the TDM emulsion or synthetic TDM 1 h after irradiation were substantially more resistant to challenge with 10, 100, 1000, or 5000 times the LD50/30 dose of Klebsiella pneumoniae than untreated mice.  相似文献   

18.
The aminophosphorothioate WR-3689 was characterized for its ability to protect mouse jejunal cells in vivo from single doses of X or gamma radiation. First, the effect of the drug on the survival of jejunal stem cells was examined using a clonogenic end point, the crypt microcolony assay. When WR-3689 was administered 30 min prior to whole-body irradiation, the number of surviving crypt cells was markedly increased at all doses of the drug, although protection began to level out at doses larger than 600 mg/kg. Protection was maximal when the drug was given 30 min before whole-body irradiation and declined rapidly with both shorter and longer intervals. Protection factors (PFs) were obtained by measuring survival curves for clonogenic crypt cells as a function of radiation dose; WR-3689 given 30 min before whole-body irradiation protected jejunum in the microcolony assay with a PF of 1.26 +/- 0.02, 1.50 +/- 0.10, and 1.65 +/- 0.10 at doses of 200, 400, and 800 mg/kg, respectively. Next, the effect of WR-3689 on the survival of jejunal stem cells was determined by assaying the survival of mice given X-ray doses to the whole abdomen in the range leading to death from the gastrointestinal syndrome. The PFs based on the LD50 values for 11-day survival were 1.31 +/- 0.05 (200 mg/kg) and 1.48 +/- 0.05 (400 mg/kg). Crypt-cell survival and animal survival were thus modified to a similar extent by this agent. Finally, the effect of WR-3689 on the induction of DNA single-strand breaks (SSBs) in jejunal cells was measured using an adaptation of the alkaline elution methodology. In mice treated with WR-3689 (400 or 800 mg/kg) 30 min prior to whole-body irradiation with 10 Gy there was no significant reduction in the number of DNA SSBs induced either in samples of the jejunum or in the cycling crypt cells, providing further evidence that there is no simple relationship between the modification of DNA SSBs and the survival of jejunal stem cells.  相似文献   

19.
Oxymetholone is a 17α -alkylated anabolic-androgenic steroid. This drug can stimulate bone marrow cells and increase the blood cells in the peripheral blood vessels. It has been used for the treatment of anemia caused by low red cell production. Since oxymetholone has hematopoietic effect, we studied radioprotective effects of this drug in mice. In this study, we determined percentage of survival, dose-reduction factor (DRF) and hematological parameters in irradiated mice which treated with or without oxymetholone. Oxymetholone administrated at different doses 80, 160, 320, 640 mg/kg by gavages at 24 h before 8 Gy gamma irradiation. At 30 days after treatment, the following percentage of animals survival in each group was as: 80 mg/kg, 50%; 160 mg/kg, 50%; 320 mg/kg, 55%; 640 mg/kg, 75% and vehicle, 15%. Percentage of survival increased in all of treated groups statistically compared with irradiated-vehicle group. In the groups treated by oxymetholone, maximum protection was realized at 640 mg/kg. In order to calculate the DRF for oxymetholone, mice were exposed to whole-body gamma irradiation with dose ranges between 5.83 and 11.23 Gy. The probit line for oxymetholone-treated mice was shifted to the right with a DRF of 1.14. In mice exposed to whole-body gamma-irradiation (4 Gy), an oral administration of 640 mg/kg oxymetholone ameliorated radiation-induced decreases in circulating platelets and erythrocytes, but had a less effect on total number of WBC. These results demonstrate that oxymetholone stimulates myelopoiesis and thrombocytopenia and enhances survival in mice after ionizing radiation.  相似文献   

20.
The vitamin E analog γ-tocotrienol (GT3) is a potent radioprotector and mitigator. This study was performed to (a) determine whether the efficacy of GT3 can be enhanced by the addition of the phosphodiesterase inhibitor pentoxifylline (PTX) and (b) to obtain information about the mechanism of action. Mice were injected subcutaneously with vehicle, GT3 [400 mg/kg 24 h before total-body irradiation (TBI)], PTX (200 mg/kg 30 min before TBI), or GT3+PTX before being exposed to 8.5-13 Gy TBI. Overall lethality, survival time and intestinal, hematopoietic and vascular injury were assessed. Cytokine levels in the bone marrow microenvironment were measured, and the requirement for endothelial nitric oxide synthase (eNOS) was studied in eNOS-deficient mice. GT3+PTX significantly improved survival compared to GT3 alone and provided full protection against lethality even after exposure to 12.5 Gy. GT3+PTX improved bone marrow CFUs, spleen colony counts and platelet recovery compared to GT3 alone. GT3 and GT3+PTX increased bone marrow plasma G-CSF levels as well as the availability of IL-1α, IL-6 and IL-9 in the early postirradiation phase. GT3 and GT3+PTX were equally effective in ameliorating intestinal injury and vascular peroxynitrite production. Survival studies in eNOS-deficient mice and appropriate controls revealed that eNOS was not required for protection against lethality after TBI. Combined treatment with GT3 and PTX increased postirradiation survival over that with GT3 alone by a mechanism that may depend on induction of hematopoietic stimuli. GT3+PTX did not reduce GI toxicity or vascular oxidative stress compared to GT3 alone. The radioprotective effect of either drug alone or both drugs in combination does not require the presence of eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号