首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of AFEST, a novel hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus, complexed with a sulphonyl derivative, has been determined and refined to 2.2 A resolution. This enzyme, which has recently been classified as a member of the hormone- sensitive-lipase (H) group of the esterase/lipase superfamily, presents a canonical alpha/beta hydrolase core, shielded on the C-terminal side by a cap region composed of five alpha-helices. It contains the catalytic triad Ser160, His285 and Asp255, whereby the nucleophile is covalently modified and the oxyanion hole formed by Gly88, Gly89 and Ala161. A structural comparison of AFEST with its mesophilic and thermophilic homologues, Brefeldin A esterase from Bacillus subtilis (BFAE) and EST2 from Alicyclobacillus acidocaldarius, reveals an increase in the number of intramolecular ion pairs and secondary structure content, as well as a significant reduction in loop extensions and ratio of hydrophobic to charged surface area. The variety of structural differences suggests possible strategies for thermostabilization of lipases and esterases with potential industrial applications.  相似文献   

2.
BACKGROUND: The reduction of carbon dioxide to methane in methanogenic archaea involves the tetrahydrofolate analogue tetrahydromethanopterin (H(4)MPT) as a C(1) unit carrier. In the third step of this reaction sequence, N(5)-formyl-H(4)MPT is converted to methenyl-H(4)MPT(+) by the enzyme methenyltetrahydromethanopterin cyclohydrolase. The cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri (Mch) is extremely thermostable and adapted to a high intracellular concentration of lyotropic salts. RESULTS: Mch was crystallized and its structure solved at 2.0 A resolution using a combination of the single isomorphous replacement (SIR) and multiple anomalous dispersion (MAD) techniques. The structure of the homotrimeric enzyme reveals a new alpha/beta fold that is composed of two domains forming a large sequence-conserved pocket between them. Two phosphate ions were found in and adjacent to this pocket, respectively; the latter is displaced by the phosphate moiety of the substrate formyl-H(4)MPT according to a hypothetical model of the substrate binding. CONCLUSIONS: Although the exact position of the substrate is not yet known, the residues lining the active site of Mch could be tentatively assigned. Comparison of Mch with the tetrahydrofolate-specific cyclohydrolase/dehydrogenase reveals similarities in domain arrangement and in some active-site residues, whereas the fold appears to be different. The adaptation of Mch to high salt concentrations and high temperatures is reflected by the excess of acidic residues at the trimer surface and by the higher oligomerization state of Mch compared with its mesophtic counterparts.  相似文献   

3.
4.
Both monomeric and dimeric NADP+-dependent isocitrate dehydrogenase (IDH) belong to the metal-dependent beta-decarboxylating dehydrogenase family and catalyze the oxidative decarboxylation from 2R,3S-isocitrate to yield 2-oxoglutarate, CO2, and NADPH. It is important to solve the structures of IDHs from various species to correlate with its function and evolutionary significance. So far, only two crystal structures of substrate/cofactor-bound (isocitrate/NADP) NADP+-dependent monomeric IDH from Azotobacter vinelandii (AvIDH) have been solved. Herein, we report for the first time the substrate/cofactor-free structure of a monomeric NADP+-dependent IDH from Corynebacterium glutamicum (CgIDH) in the presence of Mg2+. The 1.75 A structure of CgIDH-Mg2+ showed a distinct open conformation in contrast to the closed conformation of AvIDH-isocitrate/NADP+ complexes. Fluorescence studies on CgIDH in the presence of isocitrate/or NADP+ suggest the presence of low energy barrier conformers. In CgIDH, the amino acid residues corresponding to the Escherichia coli IDH phosphorylation-loop are alpha-helical compared with the more flexible random-coil region in the E. coli protein where IDH activation is controlled by phosphorylation. This more structured region supports the idea that activation of CgIDH is not controlled by phosphorylation. Monomeric NADP+-specific IDHs have been identified from about 50 different bacterial species, such as proteobacteria, actinobacteria, and planctomycetes, whereas, dimeric NADP+-dependent IDHs are diversified in both prokaryotes and eukaryotes. We have constructed a phylogenetic tree based on amino acid sequences of all bacterial monomeric NADP+-dependent IDHs and also another one with specifically chosen species which either contains both monomeric and dimeric NADP+-dependent IDHs or have monomeric NADP+-dependent, as well as NAD+-dependent IDHs. This is done to examine evolutionary relationships.  相似文献   

5.
BACKGROUND: The triosephosphate isomerase (TIM) fold is found in several different classes of enzymes, most of which are oligomers; TIM itself always functions as a very tight dimer. It has recently been shown that a monomeric form of TIM ('monoTIM') can be constructed by replacing a 15-residue interface loop, loop-3, with an eight-residue fragment; modelling suggests that this should result in a short strain-free turn, resulting in the subsequent helix, helix-A3, having an additional turn at its amino terminus. RESULTS: The crystal structure of monoTIM shows that it retains the characteristic TIM-barrel (betaalpha)8-fold and that the new loop has a structure very close to that predicted. Two other interface loops, loop-1 and loop-4, which contain the active site residues Lys13 and His95, respectively, show significant changes in structure in monoTIM compared with dimeric wild-type TIM. CONCLUSION: The observed structural differences between monoTIM and wild-type TIM indicate that the dimeric appearance of TIM determines the location and conformation of two of the four catalytic residues.  相似文献   

6.
Jia B  Park SC  Lee S  Pham BP  Yu R  Le TL  Han SW  Yang JK  Choi MS  Baumeister W  Cheong GW 《The FEBS journal》2008,275(21):5355-5366
An NADH oxidase (NOX) was cloned from the genome of Thermococcus profundus (NOXtp) by genome walking, and the encoded protein was purified to homogeneity after expression in Escherichia coli. Subsequent analyses showed that it is an FAD-containing protein with a subunit molecular mass of 49 kDa that exists as a hexamer with a native molecular mass of 300 kDa. A ring-shaped hexameric form was revealed by electron microscopic and image processing analyses. NOXtp catalyzed the oxidization of NADH and NADPH and predominantly converted O(2) to H(2)O, but not to H(2)O(2), as in the case of most other NOX enzymes. To our knowledge, this is the first example of a NOX that can produce H(2)O predominantly in a thermophilic organism. As an enzyme with two cysteine residues, NOXtp contains a cysteinyl redox center at Cys45 in addition to FAD. Mutant analysis suggests that Cys45 in NOXtp plays a key role in the four-electron reduction of O(2) to H(2)O, but not in the two-electron reduction of O(2) to H(2)O(2).  相似文献   

7.
To minimize the large number of mispairs during genome duplication owing to the large amount of DNA to be synthesized, many replicative polymerases have accessory domains with complementary functions. We describe the crystal structure of replicative DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Comparison between other known structures indicates that although the protein is folded into the typical N-terminal, editing 3'-5'exonuclease, and C-terminal right-handed polymerase domains, it is characterized by the unusual presence of two extra alpha helices in the N-terminal domain interacting with the fingers helices to form an extended fingers subdomain, a structural feature that can account for some functional features of the protein. We explore the structural basis of specific lesion recognition, the initial step in DNA repair, describing how the N-terminal subdomain pocket of archaeal DNA polymerases could allow specific recognition of deaminated bases such as uracil and hypoxanthine in addition to the typical DNA bases.  相似文献   

8.
The structure and backbone dynamics of a double labelled (15N,13C) monomeric, 23.7 kD phosphoglycerate mutase (PGAM) from Schizosaccharomyces pombe have been investigated in solution using NMR spectroscopy. A set of 3125 NOE-derived distance restraints, 148 restraints representing inferred hydrogen bonds and 149 values of (3)J(HNHalpha) were used in the structure calculation. The mean rmsd from the average structure for all backbone atoms from residues 6-205 in the best 21 calculated structures was 0.59 A. The core of the enzyme includes an open, twisted, six-stranded beta-sheet flanked by four alpha-helices and a short 3(10)-helix. An additional smaller domain contains two short antiparallel beta-strands and a further pair of alpha-helices. The C(alpha) atoms of the S. pombe PGAM may be superimposed on their equivalents in one of the four identical subunits of Saccharomyces cerevisiae PGAM with an rmsd of 1.34 A (0.92 A if only the beta-sheet is considered). Small differences between the two structures are attributable partly to the deletion in the S. pombe sequence of a 25 residue loop involved in stabilising the S. cerevisiae tetramer. Analysis of 15N relaxation parameters indicates that PGAM tumbles isotropically with a rotational correlation time of 8.7 ns and displays a range of dynamic features. Of 178 residues analysed, only 77 could be fitted without invoking terms for fast internal motion or chemical exchange, and out of the remainder, 77 required a chemical exchange term. Significantly, 46 of the slowly exchanging (milli- to microsecond) residues lie in helices, and these account for two-thirds of all analysed helix residues. On the contrary, only one beta-sheet residue required an exchange term. In contrast to other analyses of backbone dynamics reported previously, residues in slow exchange appeared to correlate with architectural features of the enzyme rather than congregating close to ligand binding sites.  相似文献   

9.
The chaperonins are a subgroup of oligomeric molecular chaperones; the best-studied examples are chaperonin 60 (GroEL) and chaperonin 10 (GroES), both from the bacterium Escherichia coli. At the end of the 20th century, the paradigm of chaperonins as protein folders had emerged, but it is likely that during the 21st century these proteins will come to be viewed as intercellular signals. Indeed, it is possible that the chaperonins were among the first intercellular signalling proteins to evolve. During the past few years, it has emerged that chaperonin 10 and chaperonin 60 can be found on the surface of various prokaryotic and eukaryotic cells, and can even be released from cells. Secreted chaperonins can interact with a variety of cell types, including leukocytes, vascular endothelial cells and epithelial cells, and activate key cellular activities such as the synthesis of cytokines and adhesion proteins. Much has been made of the high degree of sequence conservation among the chaperonins, particularly in terms of the immunogenicity of these proteins. However, different chaperonin 60 proteins can bind to different cell-surface receptors, including the Toll-like receptors, suggesting that this family of proteins cannot be treated as one biological entity and that several subfamilies may exist. Chaperonins have been implicated in human diseases on the basis of their immunogenicity. The finding that chaperonins can also induce tissue pathology suggests that they may play roles in infections and in idiopathic diseases such as atherosclerosis and arthritis.  相似文献   

10.
The structure of the recombinant medium chain alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Aeropyrum pernix has been solved by the multiple anomalous dispersion technique using the signal from the naturally occurring zinc ions. The enzyme is a tetramer with 222 point group symmetry. The ADH monomer is formed from a catalytic and a cofactor-binding domain, with the overall fold similar to previously solved ADH structures. The 1.62 A resolution A.pernix ADH structure is that of the holo form, with the cofactor NADH bound into the cleft between the two domains. The electron density found in the active site has been interpreted to be octanoic acid, which has been shown to be an inhibitor of the enzyme. This inhibitor is positioned with its carbonyl oxygen atom forming the fourth ligand of the catalytic zinc ion. The structural zinc ion of each monomer is present at only partial occupancy and in its absence a disulfide bond is formed. The enhanced thermal stability of the A.pernix ADH is thought to arise primarily from increased ionic and hydrophobic interactions on the subunit interfaces.  相似文献   

11.
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9Å resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.  相似文献   

12.
13.
The Cyt family of proteins consists of δ-endotoxins expressed during sporulation of several subspecies of Bacillus thuringiensis. Its members possess insecticidal, hemolytic, and cytolytic activities through pore formation and attract attention due to their potential use as vehicles for targeted membrane destruction. The δ-endotoxins of subsp. israelensis include three Cyt species: a major Cyt1Aa and two minor proteins, Cyt2Ba and Cyt1Ca. A cleaved Cyt protein that lacks the N- and C-terminal segments forms a toxic monomer. Here, we describe the crystal structure of Cyt2Ba, cleaved at its amino and carboxy termini by bacterial endogenous protease(s). Overall, its fold resembles that of the previously described volvatoxin A2 and the nontoxic form of Cyt2Aa. The structural similarity between these three proteins may provide information regarding the mechanism(s) of membrane-perforating toxins.  相似文献   

14.
We identified a gene encoding a soluble quinoprotein glucose dehydrogenase homologue in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The enzyme was extremely thermostable, and the activity of the pyrroloquinoline quinone (PQQ)-bound holoenzyme was not lost after incubation at 100 °C for 10 min. The crystal structure of the enzyme was determined in both the apoform and as the PQQ-bound holoenzyme. The overall fold of the P. aerophilum enzyme showed significant similarity to that of soluble quinoprotein aldose sugar dehydrogenase (Asd) from E. coli. However, clear topological differences were observed in the two long loops around the PQQ-binding sites of the two enzymes. Structural comparison revealed that the hyperthermostability of the P. aerophilum enzyme is likely attributable to the presence of an extensive aromatic pair network located around a β-sheet involving N- and C-terminal β-strands.  相似文献   

15.
A cold alkaline protease, isolated from an Antarctic Pseudomonas aeruginosa strain, has been purified and crystallized. Large crystals were obtained in the presence of PEG 6000 at pH 7 and pH 8. They belong to the space group P2(1)2(1)2(1). A complete data set to 2.1 A resolution has been measured. The structure has been determined by the molecular replacement method using the coordinates of the mesophilic alkaline protease as a model. The molecular replacement solution displays a correlation coefficient of 0.39 and an R-factor of 0.48. Subsequent inspection of the electron density map in the active site region has confirmed the correctness of the solution. Model building and structure refinement will be initiated when the protease sequence becomes fully available. This is the second report, following one on an alpha-amylase, of the preliminary crystallographic characterization of a psychrophilic enzyme.  相似文献   

16.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. Here we present the crystal structure of class II (coenzyme B12-dependent) ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii in the apo enzyme form and in complex with the B12 analog adeninylpentylcobalamin at 1.75 and 2.0 A resolution, respectively. This monomeric, allosterically regulated class II RNR retains all the key structural features associated with the catalytic and regulatory machinery of oligomeric RNRs. Surprisingly, the dimer interface responsible for effector binding in class I RNR is preserved through a single 130-residue insertion in the class II structure. Thus, L. leichmannii RNR is a paradigm for the simplest structural entity capable of ribonucleotide reduction, a reaction linking the RNA and DNA worlds.  相似文献   

17.
Five fractions with lignin peroxidase activity were isolated by FPLC-Mono Q from a Streptomyces viridosporus culture. F4 and F5 showed the highest specific activity and degree of protein homogeneity by chromatofocusing, IEF- and gradient-PAGE. The individual analysis of F4 and F5 by FPLC-Superdex 75, showed MW that were multiples to each other (68,000; 23,000; 12,000), although by SDS PAGE a sole MW of 13,500 was obtained, indicating a monomer based structure. The amino-acid composition of F5 showed absence of sulfur amino acids.  相似文献   

18.
Aspartate carbamoyltransferase (ATCase) is a model enzyme for understanding allosteric effects. The dodecameric complex exists in two main states (T and R) that differ substantially in their quaternary structure and their affinity for various ligands. Many hypotheses have resulted from the structure of the Escherichia coli ATCase, but so far other crystal structures to test these have been lacking. Here, we present the tertiary and quaternary structure of the T state ATCase of the hyperthermophilic archaeon Sulfolobus acidocaldarius (SaATC(T)), determined by X-ray crystallography to 2.6A resolution. The quaternary structure differs from the E.coli ATCase, by having altered interfaces between the catalytic (C) and regulatory (R) subunits, and the presence of a novel C1-R2 type interface. Conformational differences in the 240 s loop region of the C chain and the C-terminal region of the R chain affect intersubunit and interdomain interfaces implicated previously in the allosteric behavior of E.coli ATCase. The allosteric-zinc binding domain interface is strengthened at the expense of a weakened R1-C4 type interface. The increased hydrophobicity of the C1-R1 type interface may stabilize the quaternary structure. Catalytic trimers of the S.acidocaldarius ATCase are unstable due to a drastic weakening of the C1-C2 interface. The hyperthermophilic ATCase presents an interesting example of how an allosteric enzyme can adapt to higher temperatures. The structural rearrangement of this thermophilic ATCase may well promote its thermal stability at the expense of changes in the allosteric behavior.  相似文献   

19.
Extremophiles - Monomeric isocitrate dehydrogenase (IDH) stands for a separated subgroup among IDH protein family. Up to now, all reported monomeric IDHs are from prokaryotes. Here, a monomeric IDH...  相似文献   

20.
The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 Å spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer–monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy. © 1997 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号