首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

2.
The secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified in a bacterial expression system. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4 x 10(5)s(-1) and k(cat)/K(M) of 4.9 x 10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as the ubiquitous isoform CA I or the transmembrane, tumor-associated isozyme CA IX. A series of amino acids and amines were shown to act as CA VI activators, with variable efficacies. l-His, l-Trp, and dopamine showed weak CA VI activating effects (K(A)s in the range of 21-42 microM), whereas d-His, d-Phe, l-DOPA, l-Trp, serotonin, and some pyridyl-alkylamines were better activators, with K(A)s in the range of 13-19 microM. The best CA VI activators were l-Phe, d-DOPA, l-Tyr, 4-amino-l-Phe, and histamine, with K(A)s in the range of 1.23-9.31 microM. All these activators enhance k(cat), having no effect on K(M), participating thus in the rate determining step in the catalytic cycle, the proton transfer reactions between the enzyme active site and the environment.  相似文献   

3.
A high activity α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from various tissues of the Antarctic seal Leptonychotes weddellii. The new enzyme, denominated lwCA, has a catalytic activity for the physiologic CO(2) hydration to bicarbonate reaction, similar to that of the high activity human isoform hCA II, with a k(cat) of 1.1×10(6) s(-1), and a k(cat)/K(m) of 1.4×10(8) M(-1) s(-1). The enzyme was highly inhibited by cyanate, thiocyanate, cyanide, bicarbonate, carbonate, as well as sulfamide, sulfamate, phenylboronic/phenylarsonic acids (K(I)s in the range of 46-100 μM). Many clinically used sulfonamides, such as acetazolamide, methazolamide, dorzolamide, brinzolamide and benzolamide were low nanomolar inhibitors, with K(I)s in the range of 5.7-67 nM. Dichlorophenamide, zonisamide, saccharin and hydrochlorothiazide were weaker inhibitors, with K(I)s in the range of 513-5390 nM. The inhibition profile with anions and sulfonamides of the seal enzyme was rather different from those of the human isoforms hCA I and II. The high sensitivity to bicarbonate inhibition of lwCA, unlike that of the human enzymes, may reflect an evolutionary adaptation to the deep water, high CO(2) partial pressure and hypoxic conditions in which Weddell seals spend much of their life.  相似文献   

4.
The cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isozyme III (hCA III) has been cloned and purified by the GST-fusion protein method. Recombinant pure hCA III had the following kinetic parameters for the CO(2) hydration reaction at 20 degrees C and pH 7.5: k(cat) of 1.3 x 10(4) s(- 1) and k(cat)/K(M) of 2.5.10(5) M(- 1) s(- 1). The first detailed inhibition study of this enzyme with anions is reported. Inhibition data of the cytosolic isozymes hCA I - hCA III with a large number of anions (halides, pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrosulfide, sulfate, sulfamic acid, sulfamide, etc.), were determined and these values are comparatively discussed for these three cytosolic isoforms. Fluoride, nitrate, nitrite, phenylboronic acid and phenylarsonic acid (as anions) were weak hCA III inhibitors (K(I)s of 21-78.5 mM), whereas bicarbonate, chloride, bromide, sulfate and several other simple anions showed K(I)s around 1 mM. The best hCA III inhibitors were carbonate, cyanide, thiocyanate, azide and hydrogensulfide, which showed K(I)s in the range of 10-90 microM. It is difficult to explain the inhibitory activity of carbonate (K(I) of 10 microM) against hCA III, also considering the fact that this ion has an affinity of 15-73 mM for hCA I and II and is in equilibrium with one of the substrates of this enzyme, i.e., bicarbonate, which is a much weaker inhibitor (K(I) of 0.74 mM against hCA III, of 12 mM against hCA I and of 85 mM against hCA II).  相似文献   

5.
The unique secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4x10(5)s(-1) and k(cat)/K(M) of 4.9x10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as isoforms CA I or CA IX. A series of anions (such as bicarbonate, chloride, nitrate, etc.) were shown to inhibit the activity of the enzyme, with inhibition constants typically in the range of 0.60-0.90mM. The best hCA VI inhibitors were cyanide, azide, sulfamide, and sulfamate, with inhibition constants in the range of 70-90microM.  相似文献   

6.
A library of sulfonamides/sulfamates has been investigated for the inhibition of the carboxyterminal truncated form of the alpha-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the gastric pathogen Helicobacter pylori (hpCA). This enzyme, incorporating 202 amino acid residues, showed a catalytic activity similar to that of the full length hpCA, with k(cat) of 2.35 x 10(5)s(-1) and k(cat)/K(M) of 1.56 x 10(7)M(-1)s(-1) at 25 degrees C and pH of 8.9, for the CO(2) hydration reaction. All types of activity for inhibition of the bacterial enzyme have been detected. Dorzolamide and simple 4-substituted benzenesulfonamides were weak hpCA inhibitors (inhibition constants, K(I)s, in the range of 830-4310 nM). Sulfanilamide, orthanilamide, some of their derivatives, and indisulam showed better activity (K(I)s in the range of 310-562 nM), whereas most of the clinically used CA inhibitors, such as methazolamide, ethoxzolamide, dichlorophenamide, brinzolamide, topiramate, zonisamide, etc., acted as medium potency hpCA inhibitors (K(I)s in the range of 124-287 nM). Some potent hpCA inhibitors were detected too (K(I)s in the range of 20-96 nM) such as acetazolamide, 4-amino-6-chloro-1,3-benzenedisulfonamide, 4-sulfanilyl-aminoethyl-benzenesulfonamide, and 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. Most of the investigated derivatives acted as better inhibitors of the human isoform hCA II than as hpCA inhibitors. Since hpCA is essential for the survival of the pathogen in acid, its inhibition by compounds such as those investigated here might be used as a new pharmacologic tool in the management of drug resistant H. pylori.  相似文献   

7.
The inhibition of the last human carbonic anhydrase (CA, EC 4.2.1.1) isozyme (hCA XIV) discovered has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and zonisamide), as well as the sulfamate antiepileptic drug topiramate. The full-length hCA XIV is an enzyme showing a medium-low catalytic activity, quite similar to that of hCA XII, with the following kinetic parameters at 20 degrees C and pH 7.5, for the CO2 hydration reaction: k(cat) = 3.12 x 10(5) s(-1) and k(cat)/K(M) = 3.9 x 10(7) M(-1) s(-1). All types of activities have been detected for the investigated compounds, with several micromolar inhibitors, including zonisamide, topiramate, and simple sulfanilamide derivatives (K(I)-s in the range of 1.46-6.50 microM). In addition, topiramate and zonisamide were observed to behave as weak hCA XII inhibitors, while zonisamide was an effective hCA IX inhibitor (K(I) of 5.1 nM). Some benzene-1,3-disulfonamide derivatives or simple five-membered heteroaromatic sulfonamides showed K(I)-s in the range of 180-680 nM against hCA XIV, whereas the most effective of such inhibitors, including 3-chloro-/bromo-sulfanilamide, benzolamide-like, ethoxzolamide-like, and acetazolamide/methazolamide-like derivatives, showed inhibition constant in the range of 13-48 nM. The best hCA XIV inhibitor was aminobenzolamide (K(I) of 13 nM), but no CA XIV-selective derivatives were evidenced. There are important differences of affinity of these sulfonamides/sulfamates for the three transmembrane CA isozymes, with CA XII showing the highest affinity, followed by CA IX, whereas CA XIV usually showed the lowest affinity for these inhibitors.  相似文献   

8.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

9.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme VII (hCA VII), has been investigated with a series of aromatic and heterocyclic sulfonamides, including some of the clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide and benzolamide), as well as the sulfamate antiepileptic drug topiramate. Inhibition data for the the other physiologically relevant cytosolic isoforms hCA I, hCA II and mCA XIII are also provided for comparison. hCA VII shows a high catalytic activity for the CO(2) hydration reaction, with a k(cat) of 9.5 x 10(5)s(-1) and k(cat)/K(m) of 8.3 x 10(7)M(-1)s(-1) at pH7.5 and 20 degrees C. A very interesting inhibition profile against hCA VII with this series of 32 sulfonamides/sulfamates was observed. hCA VII shows high affinity for all the investigated compounds, with inhibition constants in the range of 0.45-210 nM. Topiramate, ethoxzolamide and benzolamide showed subnanomolar hCA VII inhibitory activity, whereas acetazolamide, methazolamide, dorzolamide and brinzolamide showed K(I)-s in the range of 2.1-3.5 nM. Dichlorophenamide was slightly less active (K(I) of 26.5 nM). A number of heterocyclic or bicyclic aromatic sulfonamides also showed excellent hCA VII inhibitory properties (K(I)-s in the range of 4.3-7.0 nM) whereas many monosubstituted or disubstituted benzenesulfonamides were less active (K(I)-s in the range of 45-89 nM). The least active hCA VII inhibitors were some substituted benzene-1,3-disulfonamides as well as some halogenated sulfanilamides (K(I)-s in the range of 100-210 nM). The inhibition profile of hCA VII is rather different of that of the other cytosolic isozymes, providing thus a possibility for the design of more selective, hCA VII-specific inhibitors. In addition, these data furnish further evidence that hCA VII is the isozyme responsible for the anticonvulsant/antiepileptic activity of sulfonamides and sulfamates.  相似文献   

10.
A series of new 1,3-diaryltriazene sulfonamides was synthesised by reaction of diazonium salt of metanilamide (3-aminobenzene sulfonamide) with substituted aromatic amines. The obtained new compounds were assayed as inhibitors of four physiologically and pharmacologically relevant human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1), specifically, hCA I, hCA II, and hCA VII (cytosolic isoforms), as well as the tumour-associated membrane-bound isoform hCA IX. All isoforms investigated here were inhibited by the newly synthesised 1,3-diaryltriazene sulfonamide derivatives from the micromolar to the nanomolar range. The cytosolic isoforms were inhibited with Kis in the range of 92.3–8371.1?nM (hCA I), 4.3–9194.0?nM (hCA II), and 15.6–9477.8?nM (hCA VII), respectively. For the membrane-bound tumour-associated isoform hCA IX, the KI-s ranged between 50.8 and 9268.5?nM. The structure–activity relationship (SAR) with these newly synthesised metanilamide derivatives are discussed in detail.  相似文献   

11.
The cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isozyme III (hCA III) has been cloned and purified by the GST-fusion protein method. Recombinant pure hCA III had the following kinetic parameters for the CO(2) hydration reaction at 20 degrees C and pH 7.5: k(cat) of 1.3 x 10(4) s(-1) and k(cat)/K(M) of 2.5 x 10(5) M(-1) s(-1), being a slower catalyst for the physiological reaction as compared to the genetically related cytosolic isoforms hCA I and II. An inhibition study with a library of sulfonamides and one sulfamate, some which are clinically used compounds, is reported. hCA III is less prone to be inhibited by these compounds as compared to hCA I and II for which many low nanomolar inhibitors were detected earlier. The best hCA III inhibitors were prontosil, sulpiride, indisulam, benzolamide, aminobenzolamide, and 4-amino-6-chloro-benzene-1,3-disulfonamide which showed K(I)s in the range of 2.3-18.1 microM. Clinically used compounds such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, brinzolamide, topiramate, zonisamide, celecoxib, and valdecoxib were less effective hCA III inhibitors, with affinities in the range of 154-2200 microM. This is the first study in which low micromolar hCA III inhibitors are reported.  相似文献   

12.
A series of 2-substituted-1,3,4-thiadiazole-5-sulfamides was prepared and assayed as inhibitors of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, the membrane-associated CA IV and the mitochondrial CA VA and VB. The new compounds showed weak inhibitory activity against hCA I (K(I)s of 102 nM-7.42 microM), hCA II (K(I)s of 0.54-7.42 microM) and hCA IV (K(I)s of 4.32-10.05 microM) but were low nanomolar inhibitors of hCA VA and hCA VB, with inhibition constants in the range of 4.2-32 nM and 1.3-74 nM, respectively. Furthermore, the selectivity ratios for inhibiting the mitochondrial enzymes over CA II were in the range of 67.5-415, making these sulfamides the first selective CA VA/VB inhibitors.  相似文献   

13.
A series of aromatic sulfonamides incorporating indane moieties were prepared starting from commercially available 1- and 2-indanamine, and their activity as inhibitors of two carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I and II was studied. The new sulfonamides incorporating acetamido, 4-chloro-benzoyl, valproyl, tetra-, and pentafluorobenzoyl moieties acted as very potent inhibitors of the slow red blood cell isozyme hCA I (K(i)s in the range of 1.6-8.5 nM), which usually has a lower affinity for such inhibitors, as compared to isozyme II. Some derivatives also showed excellent hCA II inhibitory properties (K(i)s in the range of 2.3-12 nM), but the anticonvulsant activity of these sulfonamides was rather low as compared to that of other sulfonamide/sulfamate CA inhibitors, such as methazolamide. Furthermore, the 2-amino/acetamido-indane-5-sulfonic acids prepared during this work also showed interesting CA inhibitory properties, with inhibition constants in the range of 43-89 nM against the two isozymes, being among the most potent sulfonic acid CA inhibitors reported so far.  相似文献   

14.
Sulthiame, a clinically used antiepileptic, was investigated for its interaction with 12 catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms. The drug is a potent inhibitor of CA II, VII, IX, and XII (K(I)s of 6-56 nM), and a medium potency inhibitor against CA IV, VA, VB, and VI (K(I)s of 81-134 nM). The high resolution crystal structure of the hCA II-sulthiame adduct revealed a large number of favorable interactions between the drug and the enzyme which explain its strong low nanomolar affinity for this isoform and may also be exploited for the design of effective inhibitors incorporating sultam moieties.  相似文献   

15.
A library of glycoconjugate benzenesulfonamides that contain diverse carbohydrate-triazole tails were investigated for their ability to inhibit the enzymatic activity of the three human transmembrane carbonic anhydrase (CA) isozymes hCA IX, hCA XII and hCA XIV. These isozymes have their CA domains located extracellularly, unlike the physiologically dominant hCA II, and are of immense current interest as druggable targets. Elevated expression of isozymes IX and XII is a marker for a broad spectrum of hypoxic tumors-this physiology may facilitate a novel approach to discriminate between healthy cells and cancerous cells. Many of these glycoconjugates were potent inhibitors (low nM), but importantly exhibited different isozyme selectivity profiles. The most potent hCA IX inhibitor was the glucuronic acid derivative 20 (K(i)=23nM). This compound was uniquely hCA IX selective cf. all other isozymes (16.4-, 16.8- and 4.6-fold selective against hCA II, XII, and XIV, respectively). At hCA XII there were many inhibitors with K(i)s<10nM that also demonstrated excellent selectivity (up to 344-fold) against other isozymes. Potent hCA XIV inhibitors were also identified, several with K(i)s approximately 10nM, however no hCA XIV-selective derivatives were evidenced from this library. The sugar tails of this study have shown promise as a valuable approach to both solubilize the aromatic sulfonamide CA recognition pharmacophore and to deliver potent inhibition and isozyme differentiation of the transmembrane CAs.  相似文献   

16.
A series of spin-labeled sulfonamides incorporating TEMPO moieties were synthesized by a procedure involving the formation of a thiourea functionality between the benzenesulfonamide and free radical fragment of the molecules. The new compounds were tested as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and showed efficient inhibition of the physiologically relevant isozymes hCA II and hCA IX (hCA IX being predominantly found in tumors) and moderate to weak inhibitory activity against hCA I. Some derivatives were also selective for inhibiting the tumor-associated isoform over the cytosolic one CA II, and presented significant changes in their ESR signals when complexed to the enzyme active site, being interesting candidates for the investigation of hypoxic tumors overexpressing CA IX by ESR techniques, as well as for imaging/treatment purposes.  相似文献   

17.
The α-carbonic anhydrase (CA, EC 4.2.1.1) Astrosclerin-3 previously isolated from the living fossil sponge Astrosclera willeyana (Jackson et al., Science 2007, 316, 1893), was cloned, kinetically characterized and investigated for its inhibition properties with sulfonamides and sulfamates. Astrosclerin-3 has a high catalytic activity for the CO(2) hydration reaction to bicarbonate and protons (k(cat) of 9.0×10(5) s(-1) and k(cat)/K(m) of 1.1×10(8) M(-1) × s(-1)), and is inhibited by various aromatic/heterocyclic sulfonamides and sulfamates with inhibition constants in the range of 2.9 nM-8.85 μM. Astrosclerin, and the human isoform CA II, display similar kinetic properties and affinities for sulfonamide inhibitors, despite more than 550 million years of independent evolution. Because Astrosclerin-3 is involved in biocalcification, the inhibitors characterized here may be used to gain insights into such processes in other metazoans.  相似文献   

18.
An inhibition study of the cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozyme VII (hCA VII) with anions has been conducted. Cyanate, cyanide, and hydrogensulfite were weak hCA VII inhibitors (K(I)s in the range of 7.3-15.2 mM). Cl- and HCO3- showed good inhibitory activity against hCA VII (K(I)s of 0.16-1.84 mM), suggesting that this enzyme is not involved in metabolons with anion exchangers or sodium bicarbonate cotransporters. The best inhibitors were sulfamate, sulfamide, phenylboronic, and phenylarsonic acid (K(I)s of 6.8-12.5 microM).  相似文献   

19.
We describe the synthesis of a series of novel 1-aroyl/acyl-3-(3-aminosulfonylphenyl) thioureas (4a–k) acting as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors. Reaction of alkyl/aryl isothiocyanates with 3-aminobenzenesulfonamide afforded a series of the title compounds incorporating a variety of short as well as highly lipophilic long tails. The newly synthesized sulfonamides were evaluated against 4 physiologically relevant CA isoforms (hCA I, II, IV, and IX). Several compounds showed interesting inhibitory activity. The tumor-associated hCA IX was the most sensitive isoform to inhibition with these compounds, with KIs in the range of 21.5–44.0 nM and selectivity ratios over the major cytosolic isoform hCA II in the range of 3.35–37.3. The sulfonamides incorporating the phenylacetylthioureido and pentadecanoylthioureido moieties were the most hCA IX-selective inhibitors detected in this work, making them of interest for further investigations.  相似文献   

20.
2-(Hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide was tested for its interaction with 12 carbonic anhydrase (CA, EC 4.2.1.1) isoforms in the search of compounds with good inhibitory activity against isozymes with medicinal chemistry applications, such as CA I, II, VA, VB, VII, IX, and XII among others. This sulfonamide is a potent inhibitor of CA I and II (K(I)s of 7.2-7.5 nM), a medium potency inhibitor of CA VII, IX, XII, and XIV, and a weak inhibitor against the other ubiquitous isoforms, making it thus a very interesting clinical candidate for situations in which a strong inhibition of CA I and II is needed. The crystal structure of the hCA II adduct of this sulfonamide revealed many favorable interactions between the inhibitor and the enzyme which explain its strong low nanomolar affinity for this isoform but may also be exploited for the design of effective inhibitors incorporating bicyclic moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号