首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

We carried out a meta-analysis focusing on the relationship between length of AIB1 gene poly-Q repeat domain as a modifier of breast cancer (BC) susceptibility in patients with BRCA1 and BRCA2 mutation carriers.

Data sources

We searched MEDLINE and EMBASE for all medical literature published until February, 2012.

Study Eligibility criteria

Studies were included in the meta-analysis if they met all the predetermined criteria, such as: (a) case-control or cohort studies; (b) the primary outcome was clearly defined as BC; (c) the exposure of interest measured was AIB1 polyglutamine repeat length genotype; (d) provided relative risk (RR) or odds ratio (OR) estimates and their 95% confidence intervals (CIs).

Synthesis methods

Two of the authors independently evaluated the quality of the studies included and extracted the data. Meta-analyses were performed for case-control and cohort studies separately. Heterogeneity was examined and the publication bias was assessed with a funnel plot for asymmetry.

Result

7 studies met our predetermined inclusion criteria and were included in the meta-analysis. Overall quality ratings of the studies varied from 0.36 to 0.77, with a median of 0.5. The overall RR estimates of 29/29 poly-Q repeats on risk of BC in BRCA1/2, BRCA1, and BRCA2, were always greater than 1.00; however, this effect was not statistically significant. In the meta-analysis of studies reporting the effect of 28/28 poly-Q repeats on risk of BC in BRCA1/2, BRCA1, and BRCA2, the overall RR decreased below 1.00; however, this effect was not statistically significant. Similar estimates were shown for at least 1 allele of ≤26 repeats.

Conclusions

Genotypes of AIB1 polyglutamine polymorphism analyzed do not appear to be associated to a modified risk of BC development in BRCA1 and BRCA2 mutation carriers. Future research on length of poly-Q repeat domain and BC susceptibility should be discouraged and more promising potential sources of penetrance variation among BRCA1 and BRCA2 mutation carriers should be investigated.  相似文献   

2.

Background

BRCA protein interacts with at least 13 different proteins that have been implicated with cancer susceptibility and loss of BRCA function is correlated to sensitivity to DNA crosslinking agents in preclinical models.

Results

BRCA2 methylation frequency was 44%, p53 Pro22 allele frequency was 32% and heterozygous frequency of Arg/Pro72 genotype was 60% which could be associated as risk factor for metastasis (p = 0.046 OR = 4.190). Regarding to polymorphism of codon 249 the frequency of Arg249 allele presented 82% which was considered not statistically significant.

Conclusions

There was not statistical significance to BRCA2 promoter methylation with any parameters chosen. However, our findings suggest that patients who present heterozygous genotype at codon 72 of p53 gene may have a major susceptibility to any type of metastasis and this could serve as potential auxiliary biomarker for poor prognosis.  相似文献   

3.

Background

A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown.

Methods

Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury.

Results

The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury.

Conclusion

Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.  相似文献   

4.

Background

The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress.

Methodology/Principal Findings

We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS) (generating bulky DNA adducts or alkylated bases respectively) induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombinaion machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks.

Conclusion/Significance

Taken together our results demonstrate that (i) the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner, and (ii) indicate the existence of mechanisms that may be required to prevent the simultaneous recruitment of conflicting signaling pathways to sites of DNA damage.  相似文献   

5.

Introduction

In vitro apoptosis of peripheral monocytes in rheumatoid arthritis (RA) is disturbed and influenced by cytokine production and transmembrane TNF (tmTNF) reverse signaling. The goal of the study was the analysis of the predictive value of the rate of in vitro apoptosis for the therapeutic response to anti-TNF treatment.

Methods

Spontaneous and tmTNF reverse signaling-induced apoptosis were determined in vitro in monocytes from 20 RA patients prior to initiation of therapeutic TNF inhibition with etanercept, and the subsequent clinical response was monitored.

Results

Spontaneous in vitro apoptosis was significantly reduced in RA patients compared to controls. Deficiency in spontaneous apoptosis was associated with an insufficient therapeutic response according to the European League Against Rheumatism (EULAR) response criteria and less reduction of the disease activity determined by disease activity score (DAS) 28. High susceptibility to reverse signaling-induced apoptosis was also associated with less efficient reduction in the DAS28. Of note, a strong negative correlation between the two apoptotic parameters was discernible, possibly indicative of two pathogenetically relevant processes counter-regulating each other.tmTNF reverse signaling induced in vitro production of soluble IL1-RI and IL-1RII only in monocytes not deficient in spontaneous apoptosis, and the levels of soluble IL1-RII were found to be predictive of a good clinical response to Etanercept.

Conclusion

Although tmTNF reverse signaling is able to induce apoptosis of RA monocytes in vitro, this process appears to occur in vitro preferentially in patients with suboptimal therapeutic response. Resistance to spontaneous in vitro apoptosis, in contrast, is a predictor of insufficient response to treatment.  相似文献   

6.

Background

A fraction of sporadic breast cancers has low BRCA1 expression. BRCA1 mutation carriers are more likely to achieve a pathological complete response with DNA-damage-based chemotherapy compared to non-mutation carriers. Furthermore, sporadic ovarian cancer patients with low levels of BRCA1 mRNA have longer survival following platinum-based chemotherapy than patients with high levels of BRCA1 mRNA.

Methodology/Principal Findings

Tumor biopsies were obtained from 86 breast cancer patients who were candidates for neoadjuvant chemotherapy, treated with four cycles of neoadjuvant fluorouracil, epirubicin and cyclophosphamide. Estrogen receptor (ER), progesterone receptor (PR), HER2, cytokeratin 5/6 and vimentin were examined by tissue microarray. HER2 were also assessed by chromogenic in situ hybridization, and BRCA1 mRNA was analyzed in a subset of 41 patients for whom sufficient tumor tissue was available by real-time quantitative PCR. Median time to progression was 42 months and overall survival was 55 months. In the multivariate analysis for time to progression and overall survival for 41 patients in whom BRCA1 could be assessed, low levels of BRCA1 mRNA, positive PR and negative lymph node involvement predicted a significantly lower risk of relapse, low levels of BRCA1 mRNA and positive PR were the only variables associated with significantly longer survival.

Conclusions/Significance

We provide evidence for a major role for BRCA1 mRNA expression as a marker of time to progression and overall survival in sporadic breast cancers treated with anthracycline-based chemotherapy. These findings can be useful for customizing chemotherapy.  相似文献   

7.

Background

An altered susceptibility of lung fibroblasts to Fas-induced apoptosis has been implicated in the pathogenesis of pulmonary fibrosis; however, the underlying mechanism is not completely understood. Here, we studied the susceptibility of lung fibroblasts, obtained from patients with (f-fibs) and without pulmonary fibrosis (n-fibs), to FasL- (CD95L/APO-1) induced apoptosis in relation to the expression and the amounts of membrane-bound and soluble Fas. We also analysed the effects of tumor necrosis factor-β on FasL-induced cell death.

Methods

Apoptosis was induced with recombinant human FasL, with and without prior stimulation of the fibroblasts with tumor necrosis factor-α and measured by a histone fragmentation assay and flow cytometry. The expression of Fas mRNA was determined by quantitative PCR. The expression of cell surface Fas was determined by flow cytometry, and that of soluble Fas (sFas) was determined by enzyme-linked immunosorbent assay.

Results

When compared to n-fibs, f-fibs were resistant to FasL-induced apoptosis, despite significantly higher levels of Fas mRNA. F-fibs showed lower expression of surface-bound Fas but higher levels of sFas. While TNF-α increased the susceptibility to FasL-induced apoptosis in n-fibs, it had no pro-apoptotic effect in f-fibs.

Conclusions

The data suggest that lower expression of surface Fas, but higher levels of apoptosis-inhibiting sFas, contribute to the resistance of fibroblasts in lung fibrosis against apoptosis, to increased cellularity and also to increased formation and deposition of extracellular matrix.  相似文献   

8.

Background

Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance.In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin.

Result

Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage.

Conclusion

Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.  相似文献   

9.

Background

In Asia, breast cancer is characterised by an early age of onset: In Malaysia, approximately 50% of cases occur in women under the age of 50 years. A proportion of these cases may be attributable, at least in part, to genetic components, but to date, the contribution of genetic components to breast cancer in many of Malaysia''s ethnic groups has not been well-characterised.

Methodology

Given that hereditary breast carcinoma is primarily due to germline mutations in one of two breast cancer susceptibility genes, BRCA1 and BRCA2, we have characterised the spectrum of BRCA mutations in a cohort of 37 individuals with early-onset disease (≤40 years) and no reported family history. Mutational analysis of BRCA1 and BRCA2 was conducted by full sequencing of all exons and intron-exon junctions.

Conclusions

Here, we report a total of 14 BRCA1 and 17 BRCA2 sequence alterations, of which eight are novel (3 BRCA1 and 5 BRCA2). One deleterious BRCA1 mutation and 2 deleterious BRCA2 mutations, all of which are novel mutations, were identified in 3 of 37 individuals. This represents a prevalence of 2.7% and 5.4% respectively, which is consistent with other studies in other Asian ethnic groups (4–9%).  相似文献   

10.
11.

Objective

To determine the cytokine production profile of cultured salivary gland epithelial (SGE) cells obtained from patients with Sjögren''s syndrome (SS).

Methods

SGE cells obtained from 9 SS patients and 6 normal controls were cultured in the presence of exogenous IFNγ. Cell proliferation and apoptosis in response to IFNγ were determined by WST1 assay and by FACS analysis. The concentrations of IL-6 and TGFβ secreted into culture supernatants were analyzed by ELISA.

Results

IFNγ did not significantly affect the proliferation or apoptosis of SGE cells. However, IL-6 concentrations were higher, and TGFβ concentrations were lower, in culture supernatants of SGE cells from SS patients than from normal controls.

Conclusion

Cytokine production by SGE cells from SS patients showed a skewed balance compared with normal controls, with increased IL-6 and decreased TGFβ secretion. This imbalance may be critical in the regulation of Treg/Th17 cells and may foster a pathogenic milieu that may be causative and predictive in SS.  相似文献   

12.

Background

The Retinoblastoma protein (pRB) is a key tumor suppressor that is functionally inactivated in most cancers. pRB regulates the cell division cycle and cell cycle exit through protein–protein interactions mediated by its multiple binding interfaces. The LXCXE binding cleft region of pRB mediates interactions with cellular proteins that have chromatin regulatory functions. Chromatin regulation mediated by pRB is required for a stress responsive cell cycle arrest, including oncogene induced senescence. The in vivo role of chromatin regulation by pRB during senescence, and its relevance to cancer is not clear.

Methodology/Principal Findings

Using gene-targeted mice, uniquely defective for pRB mediated chromatin regulation, we investigated its role during transformation and tumor progression in response to activation of oncogenic ras. We report that the pRB∆L mutation confers susceptibility to escape from HrasV12 induced senescence and allows transformation in vitro, although these cells possess high levels of DNA damage. Intriguingly, LSL-Kras, Rb1 ∆L/∆L mice show delayed lung tumor formation compared to controls. This is likely due to the increased apoptosis seen in the early hyperplastic lesions shortly following ras activation that inhibits tumor progression. Furthermore, DMBA treatment to induce sporadic ras mutations in other tissues also failed to reveal greater susceptibility to cancer in Rb1 ∆L/∆L mice.

Conclusions/Significance

Our data suggests that chromatin regulation by pRB can function to limit proliferation, but its loss fails to contribute to cancer susceptibility in ras driven tumor models because of elevated levels of DNA damage and apoptosis.  相似文献   

13.

Aims

To investigate the therapeutic effects and acting mechanism of a combination of Chinese herb active components, i.e., a combination of baicalin, jasminoidin and cholic acid (CBJC) on Alzheimer’s disease (AD).

Methods

Male rats were intracerebroventricularly injected with ibotenic acid (IBO), and CBJC was orally administered. Therapeutic effect was evaluated with the Morris water maze test, FDG-PET examination, and histological examination, and the acting mechanism was studied with DNA microarrays and western blotting.

Results

CBJC treatment significantly attenuated IBO-induced abnormalities in cognition, brain functional images, and brain histological morphology. Additionally, the expression levels of 19 genes in the forebrain were significantly influenced by CBJC; approximately 60% of these genes were related to neuroprotection and neurogenesis, whereas others were related to anti-oxidation, protein degradation, cholesterol metabolism, stress response, angiogenesis, and apoptosis. Expression of these genes was increased, except for the gene related to apoptosis. Changes in expression for 5 of these genes were confirmed by western blotting.

Conclusion

CBJC can ameliorate the IBO-induced dementia in rats and may be significant in the treatment of AD. The therapeutic mechanism may be related to CBJC’s modulation of a number of processes, mainly through promotion of neuroprotection and neurogenesis, with additional promotion of anti-oxidation, protein degradation, etc.  相似文献   

14.
15.

Background

The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells.

Results

The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells.

Conclusions

Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma.  相似文献   

16.
17.

Background

Avian influenza H5N1 virus is highly pathogenic partially because its H5 hemagglutinin contains a polybasic cleavage site that can be processed by proteases in multiple organs.

Methods

Monoclonal antibodies (mAb) specific to the synthetic peptide of hemagglutinin polybasic cleavage site of H5N1 virus were raised and tested for their neutralizing potential.

Results

Purified mAb showed suppression of H5N1 pseudovirus infection on Madin-Darby Canine Kidney (MDCK) cells but the efficacy was less than 50%. Since those mAb are specific to the intact uncut polybasic cleavage site of hemagglutinin, their efficacy depends on the extent of hemagglutinin cleavage on the viral surface.

Conclusions

Proteolytic analysis suggests the low efficacy associated with those mAb may be due to proteolytic cleavage already present on the majority of hemagglutinin prior to the infection of virus.  相似文献   

18.

Background

The consequences of defective homologous recombination (HR) are not understood in sporadic ovarian cancer, nor have the potential role of HR proteins other than BRCA1 and BRCA2 been clearly defined. However, it is clear that defects in HR and other DNA repair pathways are important to the effectiveness of current therapies. We hypothesize that a subset of sporadic ovarian carcinomas may harbor anomalies in HR pathways, and that a BRCAness profile (defects in HR or other DNA repair pathways) could influence response rate and survival after treatment with platinum drugs. Clinical availability of a BRCAness profile in patients and/or tumors should improve treatment outcomes.

Objective

To define the BRCAness profile of sporadic ovarian carcinoma and determine whether BRCA1, PARP, FANCD2, PTEN, H2AX, ATM, and P53 protein expression correlates with response to treatment, disease recurrence, and recurrence-free survival.

Materials and Methods

Protein microarray analysis of ovarian cancer tissue was used to determine protein expression levels for defined DNA repair proteins. Correlation with clinical and pathologic parameters in 186 patients with advanced stage III–IV and grade 3 ovarian cancer was analyzed using Chi square, Kaplan-Meier method, Cox proportional hazard model, and cumulative incidence function.

Results

High PARP, FANCD2 and BRCA1 expressions were significantly correlated with each other; however, elevated p53 expression was associated only with high PARP and FANCD2. Of all patients, 9% recurred within the first year. Among early recurring patients, 41% had high levels of PARP, FANCD2 and P53, compared to 19.5% of patients without early recurrence (p = 0.04). Women with high levels of PARP, FANCD2 and/or P53 had first year cumulative cancer incidence of 17% compared with 7% for the other groups (P = 0.03).

Conclusions

Patients with concomitantly high levels of PARP, FANCD2 and P53 protein expression are at increased risk of early ovarian cancer recurrence and platinum resistance.  相似文献   

19.

Introduction

Interferon regulatory factor 1 (IRF1) is induced by HIV early in the infection process and serves two functions: transactivation of the HIV-1 genome and thus replication, and eliciting antiviral innate immune responses. We previously described three IRF1 polymorphisms that correlate with reduced IRF1 expression and reduced HIV susceptibility.

Objective

To determine whether IRF1 polymorphisms previously associated with reduced HIV susceptibility play a role in HIV pathogenesis and disease progression in HIV-infected ART-naïve individuals.

Methods

IRF1 genotyping for polymorphisms (619, MS and 6516) was performed by PCR in 847 HIV positive participants from a sex worker cohort in Nairobi, Kenya. Rates of CD4+ T cell decline and viral loads (VL) were analyzed using linear mixed models.

Results

Three polymorphisms in the IRF1, located at 619, microsatellite region and 6516 of the gene, previously associated with decreased susceptibility to HIV infection show no effect on disease progression, either measured by HIV-1 RNA levels or the slopes of CD4 decline before treatment initiation.

Conclusion

Whereas these three polymorphisms in the IRF1 gene protect against HIV-1 acquisition, they appear to exert no discernable effects once infection is established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号