首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although the surface properties of surfactant protein (SP)-B and SP-C are similar, the contributions that either protein may make to lung function have not been identified in vivo. Mutations in SP-B cause lethal respiratory failure at birth; however, SP-B null mice are deficient in both SP-B and SP-C. To identify potential contributions of SP-C to lung function in vivo, the following transgenic mice were generated and exposed to 95% O(2) for 3 days: (SP-B(+/+),SP-C(+/+)), (SP-B(+/+), SP-C(-/-)), (SP-B(+/-),SP-C(+/+)), (SP-B(+/-),SP-C(+/-)), and (SP-B(+/-),SP-C(-/-)). Hyperoxia altered pressure-volume curves in mice that were heterozygous for SP-B, and these values were further decreased in (SP-B(+/-),SP-C(-/-)) mice. Likewise, alveolar interleukin (IL)-6 and IL-1 beta were maximally increased by O(2) exposure of (SP-B(+/-),SP-C(-/-)) mice compared with the other genotypes. Lung hysteresivity was lower in the (SP-B(+/-),SP-C(-/-)) mice. Surfactant isolated from (SP-B(+/+),SP-C(-/-)) and (SP-B(+/-),SP-C(-/-)) mice failed to stabilize the surface tension of microbubbles, showing that SP-C plays a role in stabilization or recruitment of phospholipid films at low bubble radius. Genetically decreased levels of SP-B combined with superimposed O(2)-induced injury reveals the distinct contribution of SP-C to pulmonary function in vivo.  相似文献   

4.
Surfactant protein B (SP-B) is known to promote surfactant phospholipid film formation and reduce surface tension. Native SP-B is a homodimer in which subunit association is stabilized via covalent linkage through cysteine 48. We hypothesized that loss of the intersubunit bridge would alter SP-B function and lead to increased inflammation in response to challenge by hyperoxia or endotoxin. Transgenic mice in which SP-B cysteine 48 was mutated to serine were generated and crossed into the SP-B(-/-) background. Wild-type mice and transgenic mice carrying a single copy (SP-Bmon(+)) or two copies (SP-Bmon(++)) of the transgene were exposed to 95% O2 for 3 days or intratracheally injected with 10 microg of endotoxin. Interleukin-1beta, major intrinsic protein 2, and interleukin-6 in lung homogenates after 3 days of hyperoxia were significantly higher (P < 0.001) in SP-Bmon(+) mice than SP-Bmon(++) or wild-type mice. At 16 h after endotoxin injection, cytokines in lung tissues were higher in SP-Bmon(+) mice compared with wild-type mice (P < 0.05). Consistent with prolonged recovery in SP-Bmon(+) mice, the percentage of apoptotic cells in alveolar lavage was significantly lower in SP-Bmon(+) mice than in SP-Bmon(++) and wild-type mice. Overall, increased inflammation in SP-Bmon(+) mice was corrected to a large extent by increased gene dosage, indicating that formation of the intersubunit disulfide bridge is not critical for SP-B function.  相似文献   

5.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

6.
Surfactant protein B (SP-B) is a developmentally and hormonally regulated lung protein that is required for normal surfactant function. We generated transgenic mice carrying the human SP-B promoter (-1,039/+431 bp) linked to chloramphenicol acetyltransferase (CAT). CAT activity was high in lung and immunoreactive protein localized to alveolar type II and bronchiolar epithelial cells. In addition, thyroid, trachea, and intestine demonstrated CAT activity, and each of these tissues also expressed low levels of SP-B mRNA. Developmental expression of CAT activity and SP-B mRNA in fetal lung were similar and both increased during explant culture. SP-B mRNA but not CAT activity decreased during culture of adult lung, and both were reduced by transforming growth factor (TGF)-beta(1). Treatment of adult mice with intratracheal bleomycin caused similar time-dependent decreases in lung SP-B mRNA and CAT activity. These findings indicate that the human SP-B promoter fragment directs tissue- and lung cell-specific transgene expression and contains cis-acting elements involved in regulated expression during development, fetal lung explant culture, and responsiveness to TGF-beta and bleomycin-induced lung injury.  相似文献   

7.
8.
9.
Whereas decreased concentrations of surfactant protein (SP)-B are associated with lung injury and respiratory distress, potential causal relationships between SP-B deficiency and lung inflammation remain unclear. A transgenic mouse in which human SP-B expression was placed under conditional control of doxycycline via the CCSP promoter was utilized to determine the role of SP-B in the initiation of pulmonary inflammation. Adult mice, made SP-B deficient by removal of doxycycline, developed severe respiratory failure within 4 days. Deficiency of SP-B was associated with increased minimal surface tension of the surfactant and perturbed lung mechanics. Four days of SP-B deficiency did not alter SP-C content or surfactant phospholipid content or composition. SP-B deficiency was associated with lung inflammation and increased soluble L-selectin, STAT-3, and phosphorylated STAT-3 in alveolar macrophages and alveolar epithelial cells. Alveolar IL-6, IL-1beta, and macrophage inflammatory protein-2 concentrations were increased after removal of doxycycline, indicating pulmonary inflammation. Restoration of SP-B expression following administration of doxycycline rapidly reversed SP-B-dependent abnormalities in lung mechanics and inflammation. SP-B deficiency is sufficient to cause lung dysfunction and inflammation in adult mice. SP-B reversed inflammation and maintained lung function in vivo, indicating its potential utility for the prevention and treatment of pulmonary injury and surfactant deficiency.  相似文献   

10.
11.
Surfactant protein A (SP-A) and surfactant protein D (SP-D) are important components of innate immunity that can modify the inflammatory response. However, alterations and regulation of SP-A and SP-D in acute and chronic inflammation are not well defined. In addition, serum SP-D may serve as a biomarker of lung inflammation. We determined the expression of SP-A and SP-D in murine models. To study acute inflammation, we instilled bleomycin intrabronchially. To study chronic lung inflammation, we used a transgenic mouse that overexpresses tumor necrosis factor (TNF)-alpha under the control of the SP-C promoter. These mice have a chronic mononuclear cell infiltration, airspace enlargement, pulmonary hypertension, and focal pulmonary fibrosis. In acute inflammation model, levels of mRNA for all surfactant proteins were reduced after bleomycin administration. However, serum SP-D was increased from days 7 to 28 after instillation. In chronic inflammation model, SP-D mRNA expression was increased, whereas the expression of SP-A, SP-B and SP-C was reduced. Both serum and lung SP-D concentrations were increased in chronic lung inflammation. These data clarified profile of SP-A and SP-D in acute and chronic inflammation and indicated that serum SP-D can serve as a biomarker of lung inflammation in both acute and chronic lung injury in mice.  相似文献   

12.
Alveolar type II (ATII) cell proliferation and differentiation are important mechanisms in repair following injury to the alveolar epithelium. KGF is a potent ATII cell mitogen, which has been demonstrated to be protective in a number of animal models of lung injury. We have assessed the effect of recombinant human KGF (rhKGF) and liposome-mediated KGF gene delivery in vivo and evaluated the potential of KGF as a therapy for acute lung injury in mice. rhKGF was administered intratracheally in male BALB/c mice to assess dose response and time course of proliferation. SP-B immunohistochemistry demonstrated significant increases in ATII cell numbers at all rhKGF doses compared with control animals and peaked 2 days following administration of 10 mg/kg rhKGF. Protein therapy in general is very expensive, and gene therapy has been suggested as a cheaper alternative for many protein replacement therapies. We evaluated the effect of topical and systemic liposome-mediated KGF-gene delivery on ATII cell proliferation. SP-B immunohistochemistry showed only modest increases in ATII cell numbers following gene delivery, and these approaches were therefore not believed to be capable of reaching therapeutic levels. The effect of rhKGF was evaluated in a murine model of OA-induced lung injury. This model was found to be associated with significant alveolar damage leading to severe impairment of gas exchange and lung compliance. Pretreatment with rhKGF 2 days before intravenous OA challenge resulted in significant improvements in PO2, PCO2, and lung compliance. This study suggests the feasibility of KGF as a therapy for acute lung injury.  相似文献   

13.
Intra-amniotic (IA) endotoxin induces lung maturation within 6 days in fetal sheep of 125 days gestational age. To determine the early fetal lung response to IA endotoxin, the timing and characteristics of changes in surfactant components were evaluated. Fetal sheep were exposed to 20 mg of Escherichia coli 055:B5 endotoxin by IA injection from 1 to 15 days before preterm delivery at 125 days gestational age. Surfactant protein (SP) A, SP-B, and SP-C mRNAs were maximally induced at 2 days. SP-D mRNA was increased fourfold at 1 day and remained at peak levels for up to 7 days. Bronchoalveolar lavage fluid from control animals contained very little SP-B protein, 75% of which was a partially processed intermediate. The alveolar pool of SP-B was significantly increased between 4 and 7 days in conjunction with conversion to the fully processed active airway peptide. All SPs were significantly elevated in the bronchoalveolar lavage fluid by 7 days. IA endotoxin caused rapid and sustained increases in SP mRNAs that preceded the increase in alveolar saturated phosphatidylcholine processing of SP-B and improved lung compliance in prematurely delivered lambs.  相似文献   

14.
Epithelial cells of the lung are the primary targets for respiratory viruses. Virus-carried single-stranded RNA (ssRNA) can activate Toll-like receptors (TLRs) 7 and 8, whereas dsRNA is bound by TLR3 and a cytoplasmic RNA helicase, retinoic acid-inducible protein I (RIG-I). This recognition leads to the activation of host cell cytokine gene expression. Here we have studied the regulation of influenza A and Sendai virus-induced alpha interferon (IFN-alpha), IFN-beta, interleukin-28 (IL-28), and IL-29 gene expression in human lung A549 epithelial cells. Sendai virus infection readily activated the expression of the IFN-alpha, IFN-beta, IL-28, and IL-29 genes, whereas influenza A virus-induced activation of these genes was mainly dependent on pretreatment of A549 cells with IFN-alpha or tumor necrosis factor alpha (TNF-alpha). IFN-alpha and TNF-alpha induced the expression of the RIG-I, TLR3, MyD88, TRIF, and IRF7 genes, whereas no detectable TLR7 and TLR8 was seen in A549 cells. TNF-alpha also strongly enhanced IKK epsilon mRNA and protein expression. Ectopic expression of a constitutively active form of RIG-I (deltaRIG-I) or IKK epsilon, but not that of TLR3, enhanced the expression of the IFN-beta, IL-28, and IL-29 genes. Furthermore, a dominant-negative form of RIG-I inhibited influenza A virus-induced IFN-beta promoter activity in TNF-alpha-pretreated cells. In conclusion, IFN-alpha and TNF-alpha enhanced the expression of the components of TLR and RIG-I signaling pathways, but RIG-I was identified as the central regulator of influenza A virus-induced expression of antiviral cytokines in human lung epithelial cells.  相似文献   

15.
The adenoviral E3-14.7K protein is a cytoplasmic protein synthesized after adenoviral infection. To assess the contribution of E3-14. 7K-sensitive pathways in the modulation of inflammation by the respiratory epithelium, inflammatory responses to intratracheal lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-alpha were assessed in transgenic mice bearing the adenoviral E3-14.7K gene under the direction of the surfactant protein (SP) C promoter. When E3-14.7K transgenic mice were administered LPS intratracheally, lung inflammation as indicated by macrophage and neutrophil accumulation in bronchoalveolar lavage fluid was decreased compared with wild-type control mice. Lung inflammation and epithelial cell injury were decreased in E3-14.7K mice 24 and 48 h after LPS administration. Intracellular staining for surfactant proprotein (proSP) B, proSP-C, and SP-B was decreased and extracellular staining was markedly increased in wild-type mice after LPS administration, consistent with LPS-induced lung injury. In contrast, intense intracellular staining of proSP-B, proSP-C, and SP-B persisted in type II cells of E3-14.7K mice, whereas extracellular staining of proSP-B and proSP-C was absent. Inhibitory effects of intratracheal LPS on SP-C mRNA were ameliorated by expression of the E3-14.7K gene. Similar to the response to LPS, lung inflammation after intratracheal administration of TNF-alpha was decreased in E3-14.7K transgenic mice. Levels of TNF-alpha after LPS administration were similar in wild-type and E3-14.7K-bearing mice. Cell-selective expression of E3-14.7K in the respiratory epithelium inhibited LPS- and TNF-alpha-mediated lung inflammation, demonstrating the critical role of respiratory epithelial cells in LPS- and TNF-alpha-induced lung inflammation.  相似文献   

16.
Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.  相似文献   

17.
Surfactant protein B (SP-B) mRNA and protein are restricted to alveolar Type II and Clara cells in the respiratory epithelium. In order to investigate the function of SP-B in these distinct cell types, transgenic mice were generated in which SP-B expression was selectively restored in Type II cells or Clara cells of SP-B -/- mice. The 4.8-kilobase murine SP-C promoter was used to generate 3 transgenic lines which expressed human SP-B in Type II cells (mSP-C/hSP-B). Likewise, the 2.3-kilobase murine CCSP promoter was used to generate two transgenic lines which expressed human SP-B in Clara cells (mCCSP/hSP-B). mSP-C/hSP-B and mCCSP/hSP-B transgenic mice were subsequently bred to SP-B +/- mice in order to selectively express SP-B in Type II cells or Clara cells of SP-B -/- mice. Selective restoration of SP-B expression in Type II cells completely rescued the neonatal lethal phenotype in SP-B -/- mice. Expression of SP-B in some, but not all Type II cells of SP-B -/- mice, allowed postnatal survival, but resulted in significantly altered lung architecture and function. Selective restoration of SP-B expression in Clara cells of SP-B -/- mice resulted in respiratory dysfunction and invariable neonatal death, related to the complete absence of mature SP-B peptide in these mice. These results indicate that expression and processing of the SP-B proprotein to the mature peptide in Type II cells is absolutely required for lung function in vivo and that SP-B expression in Clara cells cannot substitute for this function.  相似文献   

18.
In spite of the extensive research in the field of gene therapy, host immune responses continue to be the major barrier in translating basic research to clinical practice. Helper-dependent adenoviral (HD-Ad) vectors show great potential for pulmonary gene therapy, but the knowledge of pulmonary immune responses toward these vectors is very limited. In this study, we show that HD-Ad vectors are potent stimulators of dendritic cell (DC) maturation, thus leading to stimulation of T cell proliferation with approximately 6% of naive CD4(+) T cells from pulmonary mediastinal lymph node responding to HD-Ad-treated DCs. In contrast to the belief that HD-Ad vectors are unable to prime adaptive immune response, we show for the first time, through in vivo pulmonary studies in mice, that HD-Ad vectors can prime CD4(+) and CD8(+) T cell responses in the lung at high and substantially low doses. This indicates cross-presentation of HD-Ad-derived epitopes by DCs to prime CD8(+) T cell responses. To assess the basis of pulmonary T cell response against HD-Ad vectors, we examined the response of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the lung. In response to HD-Ad delivery, there is induction of maturation in both cDC and pDC subsets, but it is the cDCs, not pDCs, that migrate rapidly to draining lymph nodes within the first 2 days after vector delivery to prime adaptive immune response against these vectors. These findings have implications for development of strategies to prevent adaptive immune responses against gene therapy vectors.  相似文献   

19.
Pulmonary surfactant contains phospholipids including dipalmitoyl-phosphatidylcholine and three surfactant-associated proteins designated SP-A, SP-B and SP-C. A cDNA for rabbit SP-B has been isolated from a fetal (30 days gestation) rabbit lung cDNA library constructed in lambda gt11. The cDNA and deduced amino acid sequences show strong homology with the cDNAs and predicted 40 kDa proproteins for human and canine SP-B. Strong homology is also observed with the amino acid sequences directly determined for the mature 8 kDa bovine and porcine SP-B isolated from lung lavage. SP-B is remarkable for its high cysteine and proline content and for the hydrophobic nature of the organic solvent-soluble, mature protein. In vitro translation of sense but not antisense RNA transcribed from the cDNA led to the production of 40 kDa and 32 kDa proteins. These proteins were immunoprecipitated by an antibody raised against bovine SP-B. Northern blot analysis revealed the mRNA for rabbit SP-B appears in fetal rabbit lung late in gestation and falls slightly in the neonate.  相似文献   

20.
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号