首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endothelial metabolism is a key regulator of angiogenesis. Glutamine metabolism in endothelial cells (ECs) has been poorly studied. We used genetic modifications and 13C tracing approaches to define glutamine metabolism in these cells. Glutamine supplies the majority of carbons in the tricyclic acid (TCA) cycle of ECs and contributes to lipid biosynthesis via reductive carboxylation. EC‐specific deletion in mice of glutaminase, the initial enzyme in glutamine catabolism, markedly blunts angiogenesis. In cell culture, glutamine deprivation or inhibition of glutaminase prevents EC proliferation, but does not prevent cell migration, which relies instead on aerobic glycolysis. Without glutamine catabolism, there is near complete loss of TCA intermediates, with no compensation from glucose‐derived anaplerosis. Mechanistically, addition of exogenous alpha‐ketoglutarate replenishes TCA intermediates and rescues cellular growth, but simultaneously unveils a requirement for Rac1‐dependent macropinocytosis to provide non‐essential amino acids, including asparagine. Together, these data outline the dependence of ECs on glutamine for cataplerotic processes; the need for glutamine as a nitrogen source for generation of biomass; and the distinct roles of glucose and glutamine in EC biology.  相似文献   

2.
The angiogenesis inhibitors fumagillin and TNP-470 selectively inhibit the proliferation of endothelial cells, as compared with most other cell types. The mechanism of this selective inhibition remains uncertain, although methionine aminopeptidase-2 (MetAP2) has recently been found to be a target for fumagillin or TNP-470, which inactivates MetAP2 enzyme activity through covalent modification. Primary cultures of human endothelial cells and six other non-endothelial cell types were treated with fumagillin to determine its effect on cell proliferation. Only the growth of endothelial cells was completely inhibited at low concentrations of fumagillin. MetAP1 and MetAP2 levels in these cells were investigated to determine whether differential enzyme expression plays a role in the selective action of fumagillin. Western blot analysis and RT-PCR data showed that MetAP1 and MetAP2 were both expressed in these different types of cells, thus, ruling out differential expression of MetAP1 and MetAP2 as an explanation for the cell specificity of fumagillin. Expression of MetAP2, but not of MetAP1, is regulated. Treatment of human microvascular endothelial cells (HMVEC) with fumagillin resulted in threefold increases of MetAP2 protein in the cells, while MetAP1 remained constant. Similar upregulation of MetAP2 by exposure to fumagillin was also observed in non-endothelial cells, eliminating this response as an explanation for cell specificity. Taken together, these results indicate that while MetAP2 plays a critical role in the effect of fumagillin on endothelial cell proliferation, differential endogenous expression or fumagillin-induced upregulation of methionine aminopeptidases is not responsible for this observed selective inhibition.  相似文献   

3.
4.
Activated monocytes (macrophages, histiocytes) induce the formation of new blood vessels by secretion product(s). From conditioned serum-free media of porcine peripheral monocytes treated with concanavalin A, a substance with very strong angiogenic activity in vivo, designated as angiotropin, has been isolated and purified to homogeneity. We investigated the biological action of the monocyte-derived angiogenic substance on cultured capillary and large vessel (aorta) endothelial cells and on 3T3 fibroblasts, mimicking steps of the angiogenic pathway in vitro. We found that angiotropin does not stimulate the proliferation of capillary endothelial and 3T3 cells; however, in concentrations less than 1 ng/ml, it enhances random migration of capillary endothelial cells but not of 3T3 cells. On confluent monolayers of capillary and aortic endothelial cells angiotropin leads to defined changes of cell morphology that are dose dependent and reversible. In the presence of angiotropin, capillary endothelial cells rapidly form tubelike structures on gelatinized plates. This organizational state is not reached with aortic endothelial cells. The results indicate that the biological action of monocytic angiotropin is different from that of the angiogenic growth factors that stimulate the proliferation of endothelial cells and nonlymphoid mesenchymal cells and keep endothelial cells in the contact-inhibited epitheloid cell phenotype. We propose that angiotropin is directly involved in monocyte-induced angiogenesis.  相似文献   

5.
Cultures of human vascular endothelial cells were used to study the phenomenon of density-dependent inhibition of cell growth. Endothelial cells were disrupted by nitrogen cavitation, and a plasma membrane-enriched fraction was prepared by differential centrifugation followed in some cases by sucrose density gradient fractionation. Membrane suspension was added to low-density early-passage endothelial cultures grown in microwells. Hemocytometer cell counts and 6 hr 3H-thymidine pulses were performed in triplicate wells at varying intervals. Plasma membranes suppressed cell proliferation in a reversible, dose-dependent fashion. Increasing the ambient concentration of endothelial cell growth factor did not alter the inhibitory effect. The antiproliferative effect was sensitive to heat and trypsin and to incubation with 0.1 M sodium carbonate, pH 11.5. Membrane vesicles selectively derived from the apical cell surface also suppressed proliferation. This phenomenon showed at least some specificity for cell type and species in both human and bovine models. Therefore, cell-cell contact is capable of regulating endothelial cell proliferation in vitro despite the presence of available growth surfaces and of optimally supportive culture medium.  相似文献   

6.
Micromolar concentrations of sodium orthovanadate stimulated the proliferation of bovine capillary endothelial cells, but not bovine aortic endothelial cells. Vanadate was equally potent at inducing protein tyrosine phosphorylation and changes in morphology in both types of cells. However, vanadate treatment lead to an inhibition of protein tyrosine kinase activity in the aortic endothelial cells, but not the capillary endothelial cells. In capillary endothelial cells, the effect of vanadate was additive with basic FGF (bFGF) at low concentrations of bFGF. There was no interaction between bFGF and vanadate in aortic endothelial cells. TGF-beta, which inhibits the induction of endothelial cell proliferation by bFGF, appeared to shift the dose response curve to vanadate in capillary endothelial cells, increasing the proliferative effect of vanadate at low vanadate concentrations, but decreasing the proliferative effect at higher vanadate concentrations.  相似文献   

7.
Oxytocin either increases or inhibits cell growth in different cell subtypes. We tested here the effect of oxytocin on cell proliferation and migration of human dermal microvascular endothelial cells (HMEC) and tumor-associated endothelial cells purified from human breast carcinomas (B-TEC). Oxytocin receptors were expressed in both cell subtypes at mRNA and protein levels. Through oxytocin receptor, oxytocin (1 nmol/L-1 mumol/L) significantly increased cell proliferation and migration in both HMEC and B-TEC, and addition of a selective oxytocin antagonist fully reverted these effects. To verify whether a different expression of adhesion molecule-related genes could be responsible for the oxytocin-induced cell migration, untreated and treated cells were compared applying a microarray technique. In HMEC, oxytocin induced the overexpression of the matrix metalloproteinase (MMP)-17, cathepsin D, and integrin beta(6) genes. In B-TEC, oxytocin significantly switched on the gene profile of some MMP (MMP-11 and MMP-26) and of integrin beta(6). The up-regulation of the integrin beta(6) gene could be involved in the oxytocin-induced cell growth, because this subunit is known to determine activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 2, which is involved in the oxytocin mitogenic effect. In B-TEC, oxytocin also increased the expression of caveolin-1 at gene and protein levels. Because oxytocin receptor localization within caveolin-1-enriched membrane domains is necessary for activation of the proliferative (instead of the inhibitory) response to oxytocin, its enhanced expression can be involved in the oxytocin-induced B-TEC growth as well. Altogether, these data indicate that oxytocin contributes to cell motility and growth in HMEC and B-TEC.  相似文献   

8.
Specific inhibition of endothelial cell proliferation by thrombospondin.   总被引:19,自引:0,他引:19  
Angiogenesis is a multi-step event involving endothelial cell migration, attachment, and proliferation. A thrombospondin (TSP)-like protein has recently been described as a naturally-occurring inhibitor of angiogenesis. We now report that human platelet TSP inhibits the in vitro proliferation of endothelial cells from the rabbit corpus luteum, bovine adrenal cortex and pulmonary artery, and human umbilical vein. The antiproliferative effect of TSP was neutralized by monoclonal antibodies against TSP. The growth arrest seen with TSP was specific for endothelial cells since TSP actually stimulated the growth of vascular smooth muscle cells and human foreskin fibroblasts. These results imply that the angiogenesis-inhibiting effect of TSP is mediated through an inhibition of endothelial cell proliferation. Elucidation of the mechanism of action of TSP on endothelial cell proliferation may lead to potential therapeutic approaches for the control of neovascular diseases.  相似文献   

9.
Argonaute2 (Ago2), a component protein of RNA-induced silencing complex, plays a central role in RNA interference. We focused on the involvement of Ago2 in angiogenesis. Human umbilical vein endothelial cells (HUVECs) stimulated with several growth factors such as vascular endothelial growth factor were used for angiogenesis assays. We applied polycation liposomes for transfection of small interfering RNA (siRNA) to determine the biological effects of siRNA for Ago2 (siAgo2) on HUVECs. The proliferation study indicated that siAgo2 significantly suppressed the growth of HUVECs compared with control siRNA. TUNEL staining showed a certain population of HUVECs treated with siAgo2 underwent apoptosis. Furthermore, the treatment with siAgo2 suppressed the tube formation of HUVECs and significantly reduced the length of the tubes. These present data demonstrate that siAgo2 inhibited indispensable events of angiogenesis in vitro. This is the first report suggesting that Ago2 is required for angiogenesis.  相似文献   

10.
The influence of acrolein or spermine on the viability and growth of phytohaemagglutinin-stimulated rat thymic lymphocytes in cultures supplemented with foetal calf serum have been investigated. Acrolein (greater than 20 microM) was cytotoxic; spermine had little effect on viability, but inhibited [3H]TdR incorporation at low concentrations (approximately 10 microM). Cells treated with greater than 8 microM acrolein 3 hr before stimulation exhibited irreversible inhibition of protein synthesis, whereas 50 microM spermine had no effect, even when cells were treated for 24 hr before stimulation. However, addition of 25 microM spermine after stimulation did inhibit both [3H]-uridine incorporation and protein synthesis: this was reversible if cells were freed of polyamine within 4 hr, but not if washed after 24 hr. These results show that, contrary to several previous reports, in-vitro inhibition of cell proliferation by spermine is not due to the formation and action of acrolein.  相似文献   

11.
This study was designed to determine the presence of Eph B4 or ephrin B2 in human retinal endothelial cells (REC) and their signal transduction. Human retinal endothelial cells were stimulated with an Eph B4/Fc chimera and probed for phosphorylation of phosphatidylinositol-3-kinase (PI3K), Src, and mitogen-activated protein kinase (MAPK) pathways. Proliferation and migration were investigated after Eph B4/Fc stimulation in the presence of various pathway inhibitors. Human retinal endothelial cells express ephrin B2, with little expression of Eph B4. Treatment with EphB4/Fc chimera resulted in activation of PI3K, Src, and MAPK pathways. Eph B4-stimulated endothelial cell proliferation was mediated via PI3K, nitric oxide synthase, and extracellular signal-regulated kinase 1/2 (ERK1/2). Blockade of Src-PI3K pathways produced significant attenuation of Eph B4/Fc-stimulated migration. These results demonstrate for the first time that ephrin B2 is present in human retinal endothelial cells. Additionally, it appears that vascular growth may be modulated in the retina through activation of the PI3K pathway and its downstream components.  相似文献   

12.
Determinants of human B cell migration across brain endothelial cells   总被引:4,自引:0,他引:4  
Circulating B cells enter the CNS as part of normal immune surveillance and in pathologic states, including the common and disabling illness multiple sclerosis. However, little is known about the molecular mechanisms that mediate human B cell interaction with the specialized brain endothelial cells comprising the blood-brain barrier (BBB). We studied the molecular mechanisms that regulate the migration of normal human B cells purified ex vivo, across human adult brain-derived endothelial cells (HBECs). We found that B cells migrated across HBECs more efficiently than T cells from the same individuals. B cell migration was significantly inhibited by blocking Abs to the adhesion molecules ICAM-1 and VLA-4, but not VCAM-1, similar to the results previously reported for T cells. Blockade of the chemokines monocyte chemoattractant protein-1 and IL-8, but not RANTES or IFN-gamma-inducible protein-10, significantly inhibited B cell migration, and these results were correlated with the chemokine receptor expression of B cells measured by flow cytometry and by RNase protection assay. Tissue inhibitor of metalloproteinase-1, a natural inhibitor of matrix metalloproteinases, significantly decreased B cell migration across the HBECs. A comprehensive RT-PCR comparative analysis of all known matrix metalloproteinases and tissue inhibitors of metalloproteinases in human B and T cells revealed distinct profiles of expression of these molecules in the different cell subsets. Our results provide insights into the molecular mechanisms that underlie human B cell migration across the BBB. Furthermore, they identify potential common, and unique, therapeutic targets for limiting CNS B cell infiltration and predict how therapies currently developed to target T cell migration, such as anti-VLA-4 Abs, may impact on B cell trafficking.  相似文献   

13.
Zamani A  Qu Z 《FEBS letters》2012,586(16):2360-2365
Serotonin, a known neurotransmitter, also functions as an angiokine to promote angiogenesis. The majority of serotonin in the human body is stored in platelets, and platelet aggregation leads to significant release of serotonin in thrombotic tumor environment. We have investigated serotonin signaling in human endothelial cells. Through G-protein-coupled receptors, serotonin at physiologically relevant concentrations activated Src/PI3K/AKT/mTOR/p70S6K phosphorylation signaling, and this activation was similar to that seen with VEGF. This finding provides insight into the overlapping angiogenic signaling pathways stimulated by serotonin in tumor environment, and suggests one of the mechanisms underlying resistance to current VEGF-targeting antiangiogenic therapy against cancer.  相似文献   

14.
CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects.  相似文献   

15.
As a cleavage enzyme of precursor TNF-α, the high expression level of ADAM17 in endothelial cells is an important factor in atherosclerosis. In this study, we demonstrate that ADAM17 is the target of miR-152. We found that miR-152 could reduce TNF precursor cleavage and inhibit cell proliferation and migration by targeting ADAM17 in human umbilical vein endothelial cells (HUVECs). Furthermore, the expression pattern of miR-152 and corresponding target ADAM17 was opposite in HUVECs under hypoxic conditions. The levels of circulating miR-152 in AS patient sera were lower than those detected in the sera of normal individuals. Our results indicate that miR-152 may be involved in the development of human atherosclerosis and could be used as diagnostic biomarker or therapeutic target in atherosclerosis.  相似文献   

16.
Kuin, A., Citarella, F., Oussoren, Y. G., Van der Wal, A. F., Dewit, L. G. H. and Stewart, F. A. Increased Glomerular Vwf after Kidney Irradiation is not due to Increased Biosynthesis or Endothelial Cell Proliferation. Radiat. Res. 156, 20-27 (2001).Irradiation of the kidney induces dose-dependent, progressive renal functional impairment, which is partly mediated by vascular damage. It has previously been demonstrated that reduced renal function is preceded by an increased amount of von Willebrand factor (Vwf) in the glomerulus. The underlying mechanism and significance of this observation are unknown but, since it is an important mediator of platelet adhesion, Vwf in increased amounts could be implicated in glomerular thrombosis, resulting in impairment of renal function. Increased Vwf could be the result of increased biosynthesis by endothelial cells, or from increased numbers of endothelial cells after compensatory proliferation induced by irradiation, or it could be secondary to other events. In the present study, expression levels of mRNA for glomerular Vwf and glomerular cell proliferation rates were measured in control mouse kidneys and after irradiation with a single dose of 16 Gy. There were no significant changes in mRNA ratios for Vwf/beta-actin at 10 to 30 weeks after irradiation compared with unirradiated samples, whereas increased amounts of Vwf protein were seen in the glomeruli at these times. Labeling studies with IdU or staining for Ki67 demonstrated that glomerular proliferation was increased from 10 to 30 weeks after irradiation. Despite the increased proliferation rates, there was an absence of glomerular hyperplasia and no increase in the endothelial cell surface coverage in the glomeruli. Staining with antibodies against smooth muscle actin (SMAalpha) revealed that the observed proliferation mainly involved mesangial cells. These results indicate that the increased presence of glomerular Vwf after irradiation is not due to an increased number of endothelial cells per glomerulus, or to an increased production of Vwf. It is presumably secondary to other events, such as increased release of Vwf by damaged endothelial cells or entrapment of Vwf in the irradiated mesangial matrix.  相似文献   

17.
《The Journal of cell biology》1983,96(5):1266-1272
We have previously shown that microtubule-organizing centers (MTOC's) become preferentially oriented towards the leading edge of migrating endothelial cells (EC's) at the margin of an experimentally induced wound made in a confluent EC monolayer. To learn more about the mechanism responsible for the reorientation of MTOC's and to determine whether a similar reorientation takes place when cell migration is inhibited, we incubated the wounded cultures with colcemid (C) and cytochalasin B (CB), which disrupt microtubules (MT's) and microfilaments (MF's), respectively. The results obtained showed that the MTOC reorientation can occur independent of cell migration since MTOC's reoriented preferentially toward the wound edge in the CB- treated cultures, even though forward migration of the EC was inhibited. In addition, the MTOC reorientation is inhibited by C, indicating that it requires an intact system of MT's and/or other intracellular structures whose distribution is dependent on that of MT's.  相似文献   

18.
Kang Y  Wang F  Feng J  Yang D  Yang X  Yan X 《Cell research》2006,16(3):313-318
Our previous study has demonstrated that CD 146 molecule is a biomarker on vascular endothelium,which is involvedin angiogenesis and tumor growth.However the mechanism behind is not clear.Here we have for the first time devel-oped a novel CD146 blockade system using CD146 siRNA to study its function on endothelial cells.Our data showedthat CD146 siRNA specifically blocked the expression of CD146 on both mRNA and protein levels,leading to thesignificant suppression of HUVEC proliferation,adhesion and migration.These results demonstrate that CD146 playsa key role in vascular endothelial cell activity and angiogenesis,and CD146 siRNA can be used as a new inhibitor foranti-angiogenesis therapy.  相似文献   

19.
Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号