首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Washed thylakoid membranes of pea (Pisum sativum var. Little Marvel), on brief exposure to zwittergent, an amphoteric detergent, lost the property of supporting the light activation of stromal NADP-linked malate dehydrogenase. But, these depleted membranes, on reconstitution with dialyzed, high-speed supernatant of the detergent extract, showed marked light activation of the enzyme when assayed in the presence of 2,6-dichlorophenolindophenol-ascorbate. The component of the high-speed supernatant which is required for light activation is sensitive to sulfite and is heat labile. The analysis of the high-speed supernatant on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two prominent polypeptides at approximately 18,000 and 36,000 daltons. The surface-specific, chloroglycoluril-mediated iodination of the washed thylakoid membranes revealed that zwittergent had extracted these two polypeptides. The results reveal that the light effect mediator (LEM) is a surface-exposed, tightly bound protein existing in the thylakoid membranes, and that it can be removed by zwitterionic detergent and used in reconstitution studies.  相似文献   

2.
Glutamate synthase from rice (Oryza sativa) green leaves was assayed in a chloroplast reconstituted system. The enzyme activity was totally dependent on externally supplied thylakoid membranes and ferredoxin in the light. Glutamate synthase activity was also detected from etiolated leaves with photoreduced ferredoxin as an electron donor.  相似文献   

3.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

4.
Properties of soluble high potential type iron-sulfur protein (HiPIP) from beef heart mitochondria were compared to those of aconitase from pig heart. The two proteins when purified to homogeneity by the criteria of sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis show identical light absorption characteristics. EPR signals of the HiPIP type centered at g = 2.01 when oxidized, isoelectric points at pH 8.5 to 8.6, are inseparable by SDS-polyacrylamide electrophoresis, and exhibit aconitase activity when activated by reducing agents in the presence of ferrous iron. The requirement for activation goes parallel to the intensity of the signal from the oxidized iron-sulfur cluster, i.e. the cluster is reduced in the active enzyme. We conclude that the soluble mitochondrial HiPIP is identical with aconitase. The relationships of iron to labile sulfide, molecular weight and unpaired spins in the EPR signal, and implications of our findings for the role of iron in aconitase are discussed.  相似文献   

5.
Dudy Bar-Zvi  Noun Shavit 《BBA》1983,724(3):299-308
Limited modification of thylakoid membranes with glutaraldehyde inhibits the Pi-ATP exchange reaction much more than ATP synthesis or hydrolysis. More extensive modification of the membranes results in the inhibition of all activities of the ATP synthetase, but does not affect electron transport. Limited modification also does not have much effect on the tight binding of [3H]ADP or the ΔpH supported by ATP hydrolysis. The modification affects the catalytic process itself and not the activation of the latent enzyme. Cross-linking between thylakoid polypeptides is observed only after extensive treatment with glutaraldehyde, while limited modification does not result in cross-linking between polypeptides. The differential inhibition of the Pi-ATP exchange relative to ATP hydrolysis can be explained by the decrease in only one of the kinetic rate constants involved in these reactions. However, the relative insensitivity of photophosphorylation to the modification suggests that different enzyme conformations may participate in phosphorylation (light) and ATP hydrolysis or Pi-ATP exchange (dark).  相似文献   

6.
The mechanism of the light-dependent inactivation of glucose-6-phosphate dehydrogenase and the light-dependent activation of NADP+-malate dehydrogenase has been studied in partially purified extracts of pea (Pisum sativum) chloroplasts. Neither partially purified enzyme could be light modulated by washed thylakoids alone. However, a factor (mol. wt. 50 000) was present in the stroma which could, when added to purified enzyme and thylakoid membranes, reconstitute a light-dependent modulation of either glucose-6-phosphate dehydrogenase or NADP+-malate dehydrogenase. This factor, which we term protein-modulating factor, is distinct from ferredoxin-thioredoxin reductase and from thioredoxin, the factors involved in another scheme for light modulation. The scheme proposed here for light modulation involves electron transfer from Photosystem I to a membrane-bound light-effect mediator and then to the soluble protein modulating factor which modulates chloroplast enzyme activity, probably by reduction of a regulatory disulfide bond.  相似文献   

7.
The observed increase of phenolase activity and of its rate of activation during spinach leaf senescence is due to reduced binding of latent phenolase to the thylakoid membranes and not to de novo synthesis. The same amount of phenolase which is active in isolated thylakoid membranes from senescent leaves can be found in the membranes of non-senescent leaves after activation of latent enzyme. Tracer experiments give evidence that one multiple form which is responsible for the bulk activity in senescent leaves, is synthesized before, but not after the onset of senescence, indicating that pre-existing latent phenolase is converted to easily activating forms.  相似文献   

8.
Comparison of pig heart aconitase (Kennedy et al., 1972) with yeast (Candida lipolytica) aconitase (Suzuki et al., 1973) reveals similarities in molecular weight and iron content but not in sulphide content. Comparison with the Mildvan & Villafranca (1971) pig heart aconitase preparation reveals differences in iron ligands, specific activity and other properties; these differences possibly arise from protein association as pig heart protein associates under a variety of conditions. The electron spin resonance spectrum, g 4.25, and the low molar relaxivity, 473m−1·s−1, of water H+ suggest the presence of high-spin Fe(III) unco-ordinated to water in the enzyme. The iron chromophore on acid titration at 320nm gives a curve with an inflexion at pH4.2. Ten of 16 expected thiol equivalents are titrated with p-hydroxymercuribenzoate suggesting the presence of cystine as well as cysteine residues. Inhibition of the activation of inactive (activatable) enzyme is sigmoidally related to the molar ratio, p-hydroxymercuribenzoate/enzyme with 10–11mol of mercurial compound causing complete inhibition. Active enzyme, free from activating reagents, requires high molar ratios of mercurial compound for rapid inhibition. In terms of p-hydroxymercuribenzoate the enzyme then lacks an essential thiol group.  相似文献   

9.
Electrophoresis of thylakoid membrane polypeptides from Chlamydomonas reinhardi revealed two major polypeptide fractions. But electrophoresis of the total protein of green cells showed that these membrane polypeptides were not major components of the cell. However, a polypeptide fraction whose characteristics are those of fraction c (a designation used for reference in this paper), one of the two major polypeptides of thylakoid membranes, was resolved in the electrophoretic pattern of total protein of green cells. This polypeptide could not be detected in dark-grown, etiolated cells. Synthesis of the polypeptide occurred during greening of etiolated cells exposed to light. When chloramphenicol (final concentration, 200 µg/ml) was added to the medium during greening to inhibit chloroplastic protein synthesis, synthesis of chlorophyll and formation of thylakoid membranes were also inhibited to an extent resulting in levels of chlorophyll and membranes 20–25% of those found in control cells. However, synthesis of fraction c was not affected by the drug. This polypeptide appeared in the soluble fraction of the cell under these conditions, indicating that this protein was synthesized in the cytoplasm as a soluble component. When normally greening cells were transferred from light to dark, synthesis of the major membrane polypeptides decreased. Also, it was found that synthesis of both subunits of ribulose 1, 5-diphosphate carboxylase was inhibited by chloramphenicol, and that synthesis of this enzyme stopped when cells were transferred from light to dark.  相似文献   

10.
11.
The origin of thylakoid membranes was studied in Chlamydomonas reinhardtii y-1 cells during greening at 38°C. Previous studies showed that, when dark-grown cells are exposed to light under these conditions, the initial rates of accumulation of chlorophyll and the chlorophyll a/b-binding proteins in membranes are maximal (MA Maloney JK Hoober, DB Marks [1989] Plant Physiol 91: 1100-1106; JK Hoober MA Maloney, LR Asbury, DB Marks [1990] Plant Physiol 92: 419-426). As shown in this paper, photosystem II activity, which was nearly absent in dark-grown cells, also increased at a linear rate in parallel with chlorophyll. As compared with those made at 25°C, photosystem II units assembled during greening at 38°C were photochemically more efficient, as judged by saturation at a lower fluence of light and a negligible loss of excitation energy as fluorescence. Electron microscopy of cells in light for 5 or 15 minutes at 38°C showed that these initial, functional thylakoid membranes developed in association with the chloroplast envelope.  相似文献   

12.
The intra-chloroplastic distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) between thylakoid membranes and stroma was studied by determining the enzyme activities in the two fractions, obtained by the rapid centrifugation of hypotonically disrupted chloroplast preparations of spinach and pea leaf tissues. The membrane-associated form of RuBisCO was found to increase in proportion to the concentration of MgCl2 in the disrupting medium; with 20 mM MgCl2 approximately 20% of the total RuBisCO of spinach chloroplasts and 10% of that of pea chloroplasts became associated with thylakoid membranes. Once released from membranes in the absence of MgCl2, addition of MgCl2 did not cause reassociation of the enzyme. The inclusion of KCl in the hypotonic disruption buffer also caused the association of RuBisCO with membranes; however, up to 30 mM KCl, only minimal enzyme activities could be detected in the membranes, whereas above 40 mM KCl there was a sharp increase in the membrane-associated form of the enzyme.Higher concentrations of chloroplasts during the hypotonic disruption, as well as addition of purified preparations of RuBisCO to the hypotonic buffer, resulted in an increase of membrane-associated activity. Therefore, the association of the enzyme with thylakoid membranes appears to be dependent on the concentration of RuBisCO. P-glycerate kinase and aldolase also associated to the thylakoid membranes but NADP-linked glyceraldehyde-3-P dehydrogenase did not. The optimal conditions for enzyme association with the thylakoid membranes were examined; maximal association occurred at pH 8.0. The association was temperature-insensitive in the range of 4° to 25° C. RuBisCO associated with the thylakoid membranes could be gradually liberated to the soluble form upon shaking in a Vortex mixer at maximal speed, indicating that the association is loose.Abbreviations DTT dithiothreitol - RuBP ribulose 1,5-bisphosphate - RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase - MES 2-(N-morpholino) ethane sulfonic acid  相似文献   

13.
Schröder WP  Petit PX 《Plant physiology》1992,100(3):1092-1102
Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes.  相似文献   

14.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   

15.
Cyanobacterial/bacterial consortia are frequently inoculated to soils to increase the soil fertility and to accelerate the biodegradation of organic pollutants. Moreover, such consortia can also be successfully applied in landfills especially for the biodegradation of plastic wastes. However, the bioaugmentation techniques turn out frequently inefficient due to the competition of the indigenous microorganisms attacking directly these inoculated or secreting to their surroundings cell wall and membrane-lytic enzymes. It can be hypothesized that the resistance of the microbial membrane to the enzymatic degradation is correlated with its lipid composition. To verify this hypothesis glycolipid and phospholipid Langmuir monolayers were applied as models of thylakoid and plasma cyanobacterial and bacterial membranes. Hybrid fungal enzyme Lecitase ultra joining the activity of lipase and phospholipase A1 was applied as the model of fungal membrane-lytic enzyme. It turned out that anionic thylakoid lipids sulfoquinovosyldiacylglycerol and phosphatidylglycerols were the main targets of Lecitase ultra in the model multicomponent thylakoid membranes. The resistance of the model plasma bacterial membranes to enzymatic degradation depended significantly to their composition. The resistance increased generally when the unsaturated lipids were exchanged to their saturated counterparts. However, most resistant turned out the membranes composed of unsaturated phosphatidylamine and saturated anionic phospholipids.  相似文献   

16.
Scheibe R  Beck E 《Plant physiology》1979,64(5):744-748
With intact spinach (Spinacia oleracea L. cv. Vital R) chloroplasts, the activity of the NADP-dependent malate dehydrogenase after activation by light was 30 micromoles of malate formed per milligram of chlorophyll per hour; an identical rate of O2 evolution was obtained upon oxaloacetate reduction by the intact plastids. However, when the activity of NADP-dependent malate dehydrogenase was measured subsequently to maximal activation of the enzyme by dithiothreitol (DTT) an average rate of 113 micromoles per milligram of chlorophyll per hour was obtained. When membranes and stroma were separated after osmotic disruption of the chloroplasts, 28% of NADP-dependent malate dehydrogenase activity inducible by DTT was found with the membranes and 72% was found in the stromal fraction. The membrane-associated portion of the enzyme corresponds well with the activity achieved after activation by light. About 64% of an activator system was found to be associated also with the membrane fraction. Washing the membranes with buffer removed more activator than enzyme. However, both were removed almost completely by ethylenediaminetetraacetate. It was concluded that both a portion of the enzyme and the total activator system are associated with the chloroplast membranes in vivo and that the activator is more loosely bound than the enzyme. A model describing the partial activation of chloroplastic NADP-dependent malate dehydrogenase by light and the total activation by DTT is presented.  相似文献   

17.
The time course of adaptation from a high to a low photon flux density was studied in the marine chlorophyte Dunaliella tertiolecta. A one-step transition from 700 to 70 micromole quanta per square meter per second resulted in a reduction of doubling rate from 1.1 to 0.4 per day within 24 hours, followed by a slower accumulation of photosynthetic pigments, light harvesting antenna complexes, Photosystem II reaction centers and structural lipids that constitute the thylakoid membranes. Photoregulated changes in the biochemical composition of the thylakoid proteins and lipids were functionally accompanied by decreases in the minimal photosynthetic quantum requirement and photosynthetic capacity, and an increase in the minimal turnover time for in vivo electron transport from water to CO2. Analysis of de novo synthesis of thylakoid membranes and proteins indicates that a high light to low light transition leads to a transient in carbon metabolism away from lipid biosynthesis toward the synthesis of the light harvesting antenna protein complexes, accompanied by a slower restoration rate of reaction centers and thylakoid membranes. This pattern of sequential synthesis of light harvesting complexes followed by reaction centers and membranes, appears to optimize light harvesting capabilities as cells adapt to low photon flux densities.  相似文献   

18.
Experiments comparing the photosynthetic responses of a chilling-resistant species (Pisum sativum L. cv Alaska) and a chilling-sensitive species (Cucumis sativus L. cv Ashley) have shown that cucumber photosynthesis is adversely affected by chilling temperatures in the light, while pea photosynthesis is not inhibited by chilling in the light. To further investigate the site of the differential response of these two species to chilling stress, thylakoid membranes were isolated under various conditions and rates of photosynthetic electron transfer were determined. Preliminary experiments revealed that the integrity of cucumber thylakoids from 25°C-grown plants was affected by the isolation temperature; cucumber thylakoids isolated at 5°C in 400 millimolar NaCl were uncoupled, while thylakoids isolated at room temperature in 400 millimolar NaCl were coupled, as determined by addition of gramicidin. The concentration of NaCl in the homogenization buffer was found to be a critical factor in the uncoupling of cucumber thylakoids at 5°C. In contrast, pea thylakoid membranes were not influenced by isolation temperatures or NaCl concentrations. In a second set of experiments, thylakoid membranes were isolated from pea and cucumber plants at successive intervals during a whole-plant light period chilling stress (5°C). During wholeplant chilling, thylakoids isolated from cucumber plants chilled in the light were uncoupled even when the membranes were isolated at warm temperatures. Pea thylakoids were not uncoupled by the whole-plant chilling treatment. The difference in integrity of thylakoid membrane coupling following chilling in the light demonstrates a fundamental difference in photosynthetic function between these two species that may have some bearing on why pea is a chilling-resistant plant and cucumber is a chilling-sensitive plant.  相似文献   

19.
Extraction of plant light-harvesting complex II (LHCII) from the native thylakoid membrane or from aggregates by the use of surfactants brings about significant changes in the excitonic circular dichroism (CD) spectrum and fluorescence quantum yield. To elucidate the cause of these changes, e.g. trimer-trimer contacts or surfactant-induced structural perturbations, we compared the CD spectra and fluorescence kinetics of LHCII aggregates, artificial and native LHCII-lipid membranes, and LHCII solubilized in different detergents or trapped in polymer gel. By this means we were able to identify CD spectral changes specific to LHCII-LHCII interactions, at (−)-437 and (+)-484 nm, and changes specific to the interaction with the detergent n-dodecyl-β-maltoside (β-DM) or membrane lipids, at (+)-447 and (−)-494 nm. The latter change is attributed to the conformational change of the LHCII-bound carotenoid neoxanthin, by analyzing the CD spectra of neoxanthin-deficient plant thylakoid membranes. The neoxanthin-specific band at (−)-494 nm was not pronounced in LHCII in detergent-free gels or solubilized in the α isomer of DM but was present when LHCII was reconstituted in membranes composed of phosphatidylcholine or plant thylakoid lipids, indicating that the conformation of neoxanthin is sensitive to the molecular environment. Neither the aggregation-specific CD bands, nor the surfactant-specific bands were positively associated with the onset of fluorescence quenching, which could be triggered without invoking such spectral changes. Significant quenching was not active in reconstituted LHCII proteoliposomes, whereas a high degree of energetic connectivity, depending on the lipid:protein ratio, in these membranes allows for efficient light harvesting.  相似文献   

20.
Tatsuo Omata  Norio Murata 《BBA》1984,766(2):395-402
The cytochrome and prenylquinone compositions were compared for cytoplasmic membranes and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Reduced-minus-oxidized difference absorption spectra at ?196°C indicated that the thylakoid membranes contained photosynthetic cytochromes such as cytochrome ?, cytochrome b-559 and cytochrome b6, while cytochromes c-549 and c-552 were detected spectrophotometrically only after their release by sonic oscillation. The cytoplasmic membrane preparation contained one or two low-potential cytochrome(s) with α-band maxima at 553 and 559 nm at ?196°C, which differed from the cytochromes in the thylakoid membranes. A cytochrome specific to the cytoplasmic membranes was also found by heme-staining after lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Both types of membranes contained the three prenylquinones plastoquinone-9, phylloquinone and 5′-monohydroxyphylloquinone, but in different proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号