首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A suitable method was developed to efficiently incorporate 13C-labeled acetate into zearalenone by using solid cultures. Periodic feeding of the label during the zearalenone production phase significantly increased the label incorporation for the singly labeled acetate.  相似文献   

2.
Addition of [1-14C]acetate or [1,2-14C]acetate to actively growing cultures of Fusarium roseum 'Gibbosum' on rice yielded zearalenone with a specific activity ranging between 1.63 and 46.5 microCi/mmol.  相似文献   

3.
Summary To raise the yields for the production of 14C-labelled zearalenone in Fusarium cultures the influence of growth conditions and known effectors or precursors of toxin biosynthesis was studied. Benzoic acid and 2,4-dihydroxybenzoic acid used as precursors decreased toxin formation; in the presence of different pesticides such as 2,4-dichlorophenoxyacetic acid, however, toxin production increased up to 140%. The known pathway of zearalenone biosynthesis could be confirmed from the relative extents of 13C-incorporation into the zearalenone molecule by incubating Fusarium graminearum DSM 4529 with d-(+)-[1-13C]glucose as carbon source. When grown in the presence of d-[U-14C]glucose or [2-14C]malonic acid the strain produced [14C]zearalenone with specific activities of 0.07 and 0.09 Ci/mg, the 14C-incorporation rates being 0.34% and 0.48%, respectively.  相似文献   

4.
Skeletal muscle can utilize many different substrates, and traditional methodologies allow only indirect discrimination between oxidative and nonoxidative uptake of substrate, possibly with contamination by metabolism of other internal organs. Our goal was to apply 1H- and 13C-nuclear magnetic resonance spectroscopy to monitor the patterns of [3-13C]lactate and [1,2-13C]acetate (model of simple carbohydrates and fats, respectively) utilization in resting vs. contracting muscle extracts of the isolated perfused rat hindquarter. Total metabolite concentrations were measured by using NADH-linked fluorometric assays. Fractional oxidation of [3-13C]lactate was unchanged by contraction despite vascular endogenous lactate accumulation. Although label accumulated in several citric acid cycle (CAC) intermediates, contraction did not increase the concentration of CAC intermediates in any muscle extracts. We conclude that 1) the isolated rat hindquarter is a viable, well-controlled model for measuring skeletal muscle 13C-labeled substrate utilization; 2) lactate is readily oxidized even during contractile activity; 3) entry and exit from the CAC, via oxidative and nonoxidative pathways, is a component of normal muscle metabolism and function; and 4) there are possible differences between gastrocnemius and soleus muscles in utilization of nonoxidative pathways.  相似文献   

5.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

6.
Cultures of Fusarium roseium 'Gibbosum' on rice were treated with [14C]zearalenone, alpha[14C]zearalenol, or beta-[14C]zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the beta-[14C]zearalenol was converted to zearalenone, and no residual beta-[14C]zearalenol was detectable. Most of the alpha-[14C]zearalenol added was also converted into zearalenone with 14 days. In cultures treated with [14C]zearalenone, no radioactivity was noted in any other components.  相似文献   

7.
Seven healthy male volunteers exercised on a cycle ergometer at 50 +/- 5% VO2max for 180 min, on three occasions during which they ingested either water only (W), [13C]glucose (G), or [13C]fructose (F) (140 +/- 12 g, diluted at 7% in water, and evenly distributed over the exercise period). Blood glucose concentration (in mM) significantly decreased during exercise with W (5.1 +/- 0.4 to 4.2 +/- 0.1) but remained stable with G (5.0 +/- 0.4 to 5.3 +/- 0.6) or F ingestion (5.4 +/- 0.5 to 5.1 +/- 0.4). Decreases in plasma insulin concentration (microU/ml) were greater (P less than 0.05) with W (11 +/- 3 to 3 +/- 1) and F (12 +/- 4 to 5 +/- 1) than with G ingestion (11 +/- 2 to 9 +/- 5), and fat utilization was greater with F (103 +/- 11 g) than with G ingestion (82 +/- 9 g) and lower than with W ingestion (132 +/- 14 g). However F was less readily available for combustion than G; over the 3-h period 75% (106 +/- 11 g) of ingested G was oxidized, compared with 56% (79 +/- 8 g) of ingested fructose. As a consequence, carbohydrate store utilizations were similar in the two conditions (G, 174 +/- 20 g; F, 173 +/- 17 g; vs. W, 193 +/- 22 g). These observations suggest that, during prolonged moderate exercise, F ingestion maintains blood glucose as well as G ingestion, and increases fat utilization when compared to G ingestion. However, due to a slower rate of utilization of F, carbohydrate store sparing is similar with G and F ingestions.  相似文献   

8.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

9.
  • 1.1. In the present study the major metabolic pathways of glucose metabolism were determined in isolated liver cells using [2-13C]acetate and 13C magnetic resonance spectroscopy.
  • 2.2. The relative reaction rates of glucose synthesis to the TCA cycle were determined from the 13C distribution in glucose where the overall 13C enrichment of glucose was 6.41 ± 1.94% (mean ± SD; n = 6) and the mean 13C enrichment of C1, C2, C5, C6 to C3, C4 was 2.63 ± 0.30.
  • 3.3. Since the distribution of tracer in glucose is a function of the relative entry rates of pyruvate to acetyl-CoA into the oxaloacetate pool this was calculated to be 0.32 ± 0.15 and the factor for carbon exchange (1/P) between the gluconeogenic pathway and the TCA cycle was calculated to be 1.03 ± 0.20.
  • 4.4. With this carbon exchange factor and the approximated 13C enrichment of acetyl-CoA the intramitochondrial 13C enrichment of phosphoenolpyruvate was calculated and the “true” rate of hepatic gluconeogenesis from phosphoenolpyruvate estimated.
  • 5.5. Since acetate was metabolized solely in liver cells the 13C enrichment of acetyl-CoA could be approximated from that of 3-hydroxybutyrate.
  • 6.6. The carbon 13 enrichment of 3-hydroxybutyrate and phosphoenolpyruvate was 5.89 ± 0.90% and 5.96 ± 1.67%, respectively.
  • 7.7. The per cent gluconeogenesis from phosphoenolpyruvate calculated as the ratio of the 13C enrichment of glucose to that of 3-hydroxybutyrate times 1/P was 107 ± 8%.
  • 8.8. In this study the validity of assessing isotopic exchange at oxaloacetate as suggested by Katz [Katz J. (1985) Am. J. Physiol.248, R391–R399] when interpretation of the data are not obscured by pseudoketogenesis.
  • 9.9. Magnetic resonance spectroscopy provides direct information about intramolecular tracer distribution by which flux rates in major metabolic pathways are derived.
  相似文献   

10.
The metabolism of [1,2-13C2]acetate in rat brain was studied by in vivo and in vitro 13C NMR spectroscopy, in particular by taking advantage of the homonuclear 13C-13C spin coupling patterns. Well nourished rats were infused with [1,2-13C2]acetate or [1-13C]acetate in the jugular vein, and the in situ kinetics of 13C labeling during the infusion period was followed by 13C NMR techniques. The in vivo 13C NMR spectra showed signals from (i) the C-1 carbon of [1,2-13C2] acetate or [1-13C]acetate, (ii) 13CO3H-, and (iii) the natural abundance 13C carbons of sufficiently mobile fatty acids. Methanol/HCl/perchloric acid extracts of the brains were prepared and were further analyzed by high resolution 13C NMR. The homonuclear 13C-13C spin coupling patterns after infusion of [1,2-13C2]acetate showed very different isotopomer populations in glutamate, glutamine, and gamma-aminobutyric acid. Analyzing the relative proportions of these isotopomers revealed (i) two different glutamate compartments in the rat brain characterized by the presence and absence, respectively, of glutamine synthase activity, (ii) two different tricarboxylic acid cycles, one preferentially metabolizing [(1,2-13C2]acetate, the other mainly using unlabeled acetyl-coenzyme A, (iii) a hitherto unknown cerebral pyruvate recycling system associated with the tricarboxylic acid cycle, metabolizing primarily unlabeled acetyl-coenzyme A, and (iv) a predominant production of gamma-aminobutyric acid in the glutamate compartment lacking glutamine synthase.  相似文献   

11.
Cultures of Fusarium roseium 'Gibbosum' on rice were treated with [14C]zearalenone, alpha[14C]zearalenol, or beta-[14C]zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the beta-[14C]zearalenol was converted to zearalenone, and no residual beta-[14C]zearalenol was detectable. Most of the alpha-[14C]zearalenol added was also converted into zearalenone with 14 days. In cultures treated with [14C]zearalenone, no radioactivity was noted in any other components.  相似文献   

12.
13.
Solid state 13C nuclear magnetic resonance measurements of bacteriorhodopsin labeled with [4-13C]Asp show that resonances of single amino acids can be resolved. In order to assign and characterize the resonances of specific Asp residues, three different approaches were used. (1) Determination of the chemical shift anisotropy from side-band intensities provides information about the protonation state of Asp residues. (2) Relaxation studies and T1 filtering allow one to discriminate between resonances with different mobility. (3) A comparison of the spectra of light- and dark-adapted bacteriorhodopsin provides evidence for resonances from aspartic acid residues in close neighborhood of the chromophore. In agreement with other investigations, four resonances are assigned to internal residues. Two of them are protonated in the ground state up to pH 10 (Asp96 and Asp115). All other detected resonances, including Asp85 and Asp212, are due to deprotonated aspartic acid. Two lines due to the two internal deprotonated groups change upon dark and light adaptation, whereas the protonated Asp residues are unaffected.  相似文献   

14.
Brain [2-(13)C]gamma-aminobutyric acid (GABA) signal derived from the glia-specific substrate [2-(13)C]acetate reflects the extent of the GABA-glutamine neurotransmitter cycling between GABAergic neurons and glial cells. We report, for the first time, in vivo quantification of the GABA-glutamine cycling flux. The GABA-glutamine cycling flux rate was determined to be 1.8+/-0.4 micromol/(gh) (mean+/-S.D., n=6, approximately 6% of total tricarboxylic acid cycle rate) in the neocortex of vigabatrin-treated rats. The relatively small magnitude of glial contribution to the clearance of extracellular GABA measured in this study provided in vivo evidence to support the concept of a significant neuronal reuptake of GABA, which short-circuits the GABA-glutamine cycling pathway for repletion of released neurotransmitter GABA.  相似文献   

15.
16.
Raghunathan V  Chau MH  Ray BD  Rao BD 《Biochemistry》1999,38(47):15597-15605
A complete characterization of the conformations of Mn.ADP and Mn.ATP bound to the active site of yeast 3-P-glycerate kinase is presented. These conformations have been deduced on the basis of paramagnetic effects on 13C spin-lattice relaxation rates in [U-13C]nucleotides due to Mn(II), used as a substituent activating cation. The 13C relaxation measurements were performed on exclusively enzyme-bound complexes E.Mn.[U-13C]ATP and E.Mn.[U-13C]ADP at three distinct 13C NMR frequencies: 75.4, 125.7, and 181 MHz. The frequency dependence of the relaxation data has been analyzed in an effort to evaluate distances from the cation for all 10 13C nuclei in the adenosine moieties of E.Mn.ATP and E.Mn.ADP. These distance data, taken along with previously published cation-31P distances, have been used as constraints in the molecular modeling program Quanta, in which molecular dynamics simulations and energy minimization have been performed to determine the conformations that are compatible with the distance data. It was possible to model the distances on the basis of a single enzyme-bound conformation for each of the nucleotides. The details of the enzyme-bound Mn.ATP and Mn.ADP conformations are distinguishably different from each other, indicating that structural alterations occur in the enzyme-bound reaction complex as the enzyme turns over. For example, when the adenosine moieties in the bound structures of Mn.ATP and Mn.ADP are superposed, the cation is found to be displaced by approximately 2.4 A between the two conformations, suggesting that these structural changes may involve movements with significant amplitudes. Furthermore, the NMR-determined structures of enzyme-bound Mn.ATP and Mn.ADP are significantly different from those in published X-ray crystal structures of the enzyme-nucleotide complexes.  相似文献   

17.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

18.
The labelling of metabolites with the NMR active nucleus 13C allows not only metabolite enrichments to be monitored, but also the relative fluxes through competing pathways to be delineated. [2-13C, 15N]alanine was used as a metabolic probe to investigate compartmentation in superfused cerebral slices. Perchloric acid extracts of the tissue were investigated using 13C NMR spectroscopy. The spectra were obtained using a CryoProbe optimised for 13C detection (dual CryoProbe [13C, 1H]) in which the receiver and transmitter coils are cooled to approximately 20K to reduce contributions to noise in the signal obtained. Compared with conventional inverse geometry probe, the signal-to-noise ratio (S/N) was increased by approximately 17-fold using this device. A large proportion of alanine was initially metabolised over the first 20 min by glial cells, as indicated by the relative importance of the glial, only enzyme pyruvate carboxylase to the labelling pattern of glutamate, with the ratio of pyruvate carboxylase to pyruvate dehydrogenase derived glutamate being 0.25, and exported [2-13C, 15N]aspartate.Using the increased sensitivity of the CryoProbe, [2-13C, 15N]aspartate was also detected in the extracts of cerebral tissue. This metabolite could only have been derived via the pyruvate carboxylase pathway, and given the large export of the metabolite into the superfusion buffer suggests the occurrence of a "metabolon" arrangement of enzymes within glial cells.  相似文献   

19.
A new assay method for fatty acid synthetase using mass fragmentography was described. [2-13C]Malonyl-CoA was chemically synthesized from [2-13C]malonic acid and used as a substrate. The newly synthesized fatty acids were quantitated with a GC-MS instrument after methyl esterification. Monitoring of molecular ions of the newly synthesized fatty acids enabled us to determine the absolute amounts with heptadecanoic acid as an internal standard. Multiple products (14 : 0, 16 : 0, and 18 : 0) were measured individually. Using this technique, we obtained information about production profiles such as that of chain length against incubation temperature and about malonyl-CoA decarboxylation activity in enzyme preparations, and we also confirmed the presence of malonyl-CoA decarboxylation activity even in purified fatty acid synthetase from guinea pig Harderian gland. Compared with the conventional assay methods (spectrophotometric and radioisotopic), this method was more reliable and useful.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号