首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two organic Ca2+ antagonists (verapamil and nitrendipine) and of two inorganic Ca2+ channel blockers (Co2+ and ruthenium red) on the Na+-dependent release of gamma-amino-n-butyric acid (GABA) triggered by veratrine and monensin in the absence of external Ca2+ were studied in mouse brain synaptosomes. Ca2+-independent release of GABA stimulated by the Na+ channel activator veratrine was inhibited with micromolar concentrations of verapamil and nitrendipine. In contrast, GABA release induced by the Na+ ionophore monensin was insensitive to the organic Ca2+ antagonists. Verapamil also failed to modify A23187-stimulated release of GABA in the presence of Ca2+ but inhibited high K+-induced release of the transmitter. Co2+ partially diminished veratrine-induced release but did not change monensin-induced release. Releasing responses to monensin and veratrine were insensitive to ruthenium red, which inhibited the Ca2+-dependent component of GABA release evoked by high K+ depolarization. These data demonstrate that the mechanism of inducing GABA release is different for veratrine and monensin, as evidenced by their differing sensitivities to inhibition by Ca2+ channel antagonists and organic Ca2+ blockers. It is concluded that voltage-sensitive Ca2+ channels of the presynaptic membrane are not involved in the inhibitory action of Ca2+ antagonists on the Na+-dependent, Ca2+-independent mechanism of GABA release.  相似文献   

2.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

3.
Verapamil at 200 microM, prevented the respiratory stimulation, K+ loss, transmitter release, and 45Ca2+ entry into incubated synaptosomes evoked by veratrine (25 to 75 microM) or by high K+ (56 mM). Verapamil (100 microM) also blocked gamma-aminobutyric acid homoexchange, whilst tetrodotoxin was ineffective. Much lower concentrations of verapamil (less than 1 microM) blocked the 45Ca2+ entry caused by veratrine, but not its action in releasing neurotransmitter or K+. It is concluded that verapamil, at 30 to 200 microM, blocks active Na+ channels, thereby preventing depolarization. At greater than 1 microM, verapamil blocks Ca+ channels selectively.  相似文献   

4.
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of exogenous GM1 ganglioside on depolarization and ligand-induced Ca2+ signaling were investigated in PC12 cells. Cellular responses to K+ depolarization and bradykinin application in control and GM1-treated cells were examined with respect to: 1) changes in the intracellular Ca2+ concentration ([Ca2+]i) measured using fura-2 fluorescence in single cells, and 2) changes in Ca(2+)-dependent protein kinase activity as assayed by two-dimensional phosphopeptide analysis of the site-specific phosphorylation of tyrosine hydroxylase. Pretreatment of cells with GM1 (10 or 100 microM) enhanced K+ depolarization-stimulated increases in [Ca2+]i and in 32PO4 incorporation into tyrosine hydroxylase phosphopeptide T2, a Ca2+/calmodulin-dependent protein kinase II substrate. In contrast, GM1 treatment had no effect on the transient increases in [Ca2+]i evoked by bradykinin or on bradykinin-induced increases in the site-specific phosphorylation of tyrosine hydroxylase. The depolarization-induced and GM1-enhanced increases in [Ca2+]i and T2 phosphorylation were prevented by removal of external Ca2+ or pretreatment with 1 microM nitrendipine, suggesting that these increases result from Ca2+ entry through dihydropyridine-sensitive Ca2+ channels. The ability of exogenous gangliosides to potentiate increases in [Ca2+]i may underlie their diverse neuritogenic and neurotrophic actions in the nervous system.  相似文献   

6.
Release of [3H]-gamma-aminobutyric acid ([3H]GABA) from rat brain synaptosomes was studied with 60-ms time resolution, using a novel rapid superfusion method. Synaptosomes were prelabeled with [3H]GABA via an associated GABA uptake system. KCl depolarization stimulated at least three distinct components of GABA release: (1) a phasic Ca-dependent component, which develops rapidly and decays with a time constant of at most 60 ms; (2) a tonic Ca-dependent component that persists after KCl depolarization is ended; (3) a Ca-independent component. The three components of GABA release are pharmacologically distinct. The phasic component was selectively blocked by 50 microM Cd2+, while the tonic component was selectively blocked by 100 microM Ni2+. The Ca-independent component was selectively blocked by nipecotic acid (IC50 = 21 microM), a known inhibitor of Na+-dependent GABA uptake. The time course and amplitude of Ca-dependent GABA release evoked by the Ca2+ ionophore A23187 were nearly identical with Ca-dependent release evoked by depolarization. This result indicates that Ca-dependent GABA release depends primarily on Ca2+ entry into the nerve terminal, and not depolarization, per se. The properties of the phasic component suggest that it is normally initiated by a voltage-sensitive Ca2+ channel that is functionally and pharmacologically distinct from those previously described. The Ca-independent component of GABA release is probably mediated by reversal of the Na-dependent, electrogenic GABA uptake system. The ability to identify multiple components of GABA release on a physiologically relevant time scale may afford a more precise definition of the mechanism of action of drugs thought to affect neurotransmission in the brain.  相似文献   

7.
To assess the functions of Cl- -dependent glutamate "binding" (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential.  相似文献   

8.
We have demonstrated simultaneous measurement of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]i) by utilizing a dual-laser flow cytometer in embryonic rat hippocampal cell suspensions. Veratrine, a Na+ channel activator, induced both membrane depolarization and elevation of [Ca2+]i. These actions of veratrine were all reversed by the presence of tetrodotoxin (TTX). These findings suggest that Na+ channels are functionally expressed in the cells and the activation of Na+ channels increases [Ca2+]i. The usefulness of the flow cytometric analysis in elucidating the expression of membrane functions in the embryonic central nervous systems (CNS) is discussed.  相似文献   

9.
The effects that active phorbol esters, staurosporine, and changes in actin dynamics, might have on Ca2+ -dependent exocytosis of [3H]-labelled noradrenaline, induced by either membrane-depolarizing agents or a Ca2+ ionophore, have been examined in isolated nerve terminals in vitro. Depolarization-induced openings of voltage-dependent Ca2+ channels with 30 mM KCl or 1 mM 4-aminopyridine induced limited exocytosis of [3H]noradrenaline, presumably from a readily releasable vesicle pool. Application of the Ca2+ ionophore calcimycin (10 microM) induced more extensive [3H]noradrenaline release, presumably from intracellular reserve vesicles. Stimulation of protein kinase C with phorbol 12-myristate,13-acetate increased release evoked by all secretagogues. Staurosporine (1 microM) had no effect on depolarization-induced release, but decreased ionophore-induced release and reversed all effects of the phorbol ester. When release was induced by depolarization, internalization of the actin-destabilizing agent DNAase I into the synaptosomes gave a slight increase in [3H]NA release and strongly increased the potentiating effect of the phorbol ester. In contrast, when release was induced by the Ca2+ ionophore, DNAase I had no effect, either in the absence or presence of phorbol ester. The results indicate that depolarization of noradrenergic rat synaptosomes induces Ca2+ -dependent release from a releasable pool of staurosporine-insensitive vesicles. Activation of protein kinase C increases this release by staurosporine-sensitive mechanisms, and destabilization of the actin cytoskeleton further increases this effect of protein kinase C. In contrast, ionophore-induced noradrenaline release originates from a pool of staurosporine-sensitive vesicles, and although activation of protein kinase C increases release from this pool, DNAase I has no effect and also does not change the effect of protein kinase C. The results support the existence of two functionally distinct pools of secretory vesicles in noradrenergic CNS nerve terminals, which are regulated in distinct ways by protein kinase C and the actin cytoskeleton.  相似文献   

10.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth.  相似文献   

11.
(S)-(-)-10-acetoxy-10,11-dihydro-5H-dibenz/b,f/azepine-5-carboxamide (BIA 2-093) is endowed with high anticonvulsant activity and shares with carbamazepine (CBZ) and oxcarbazepine (OXC) the capability to inhibit voltage-gated sodium channels (VGSC). The present study was aimed to compare the effects of BIA 2-093, CBZ and OXC on the release of glutamate, aspartate, gamma-aminobutyric acid (GABA) and dopamine from striatal slices induced by the VGSC opener veratrine. The release of glutamate, aspartate, GABA and aspartate by veratrine from rat striatal slices was a concentration and time dependent process. All the three dibenzazepine carboxamide derivatives, BIA 2-093, CBZ and OXC inhibited in a concentration dependent manner (from 30 to 300 microM) the veratrine-induced release of glutamate, aspartate, GABA and dopamine. CBZ, OXC and BIA 2-093 were endowed with similar potencies in inhibiting veratrine-induced transmitter release. It is concluded that BIA 2-093, CBZ and OXC inhibit veratrine-induced transmitter release, which is in agreement with their capability to block VGSC. This property may be of importance for the anticonvulsant effects of BIA 2-093.  相似文献   

12.
The effect of EGTA on the release of labeled gamma-aminobutyric acid (GABA), glutamate, acetylcholine, and dopamine was studied in superfused synaptosomes from mouse brain. In the absence of both Ca2+ and Mg2+, EGTA and also EDTA at 50 microM or higher concentrations induced a 2.5-5-fold stimulation of [3H]GABA release, similar to that produced by potassium depolarization, whereas only a slight effect, or no effect at all, was observed on the release of the other transmitters studied. The GABA-releasing action of EGTA was practically abolished in the presence of Mg2+. In contrast, the effect of EDTA was also observed when the medium contained Mg2+. Studies on the ionic dependence showed that the stimulation of GABA release by EGTA was abolished in a Na+-free medium. Li+ did not substitute Na+ for the EGTA effect, which was also independent of chloride. This Na+ dependence does not seem to involve voltage-sensitive channels, since tetrodotoxin did not affect the GABA-releasing action of EGTA, whereas in parallel superfusion chambers it blocked over 80% the stimulation of GABA release by veratridine. In contrast, two calcium channel blockers in synaptosomes, La3+ and the cationic dye ruthenium red, greatly inhibited the GABA-releasing effect of EGTA. L-2,4-Diaminobutyric acid, an inhibitor of the Na+-dependent GABA carrier, did not affect the releasing action of EGTA, whereas in a parallel experiment this drug inhibited by more than 90% the exchange of labeled GABA with unlabeled GABA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   

14.
Previous studies have shown that hypertonic mannitol or NaCl increases the release of [3H]arachidonate and immunoreactive prostaglandin E in inner medullary slices incubated in Ca2+-free media containing EGTA. By contrast, the stimulation of these parameters by ionophore A23187 and by arginine-vasopressin are abolished in Ca2+-free media plus EGTA. In the present study, the effects of Ca2+ deprivation and the intracellular Ca2+ antagonist TMB-8 [8-N,N-diethylamino)octyl-3,4,5 -trimethoxybenzoate-HCl) were further examined to assess the Ca2+ dependence of the actions of different stimuli of prostaglandin E synthesis in rat renal inner medulla. Ca2+-free media without EGTA abolished increases in [3H]arachidonate and immunoreactive prostaglandin E release induced by ionophore A23187, but not those induced by arginine-vasopressin, suggesting that different pools of Ca2+ subserve expression of the actions of these two stimuli. At low concentrations, TMB-8 (10-25 microM) inhibited increases in [3H]arachidonate and immunoreactive prostaglandin E release induced by arginine-vasopressin, but did not influence effects of Ca2+ plus ionophore A23187 or hypertonicity on these parameters. At higher concentrations (100-500 microM), TMB-8 suppressed effects of ionophore A23187, hyperosmolar NaCl and mannitol on immunoreactive prostaglandin E and [3H]arachidonate release from slices. The effects of a sub-optimal inhibitory concentration of TMB-8 on ionophore A23187 actions were overcome by increasing Ca2+ in the media from 1.5 to 5 mM. Ca2+ deprivation, or concentrations of EGTA or TMB-8, that were effective in suppressing increases in immunoreactive prostaglandin E induced by ionophore A23187, arginine-vasopressin or hypertonicity, did not modify increases in immunoreactive prostaglandin E induced by exogenous arachidonate. Moreover, in microsomal fractions of inner medulla, TMB-8 suppressed Ca2+-dependent increases in phospholipase A2 and C activities, an effect which was competitive with Ca2+. Thus, Ca2+ deprivation and TMB-8 act at a step in the immunoreactive prostaglandin E synthetic pathway proximal to cyclooxygenase activity, and probably at the level of Ca2+-dependent acyl hydrolase activity. The results with TMB-8 indicate that an intracellular pool of Ca2+ is involved in expression of the actions of hypertonicity to increase [3H]arachidonate release and immunoreactive prostaglandin E in inner medulla.  相似文献   

15.
The effects of maitotoxin (MTX) on endogenous amino acid release were tested on highly purified striatal neurons differentiated in primary culture. MTX induced a large and concentration-dependent release of gamma-aminobutyric acid (GABA). This effect was abolished when experiments were performed in the absence of external Ca2+, and restored when Ca2+ ions were added after removing the MTX-containing Ca2+-free solution. MTX-induced amino acid release was not affected by 1 microM nifedipine and only slightly inhibited by 1 mM Co2+. MTX also induced a massive accumulation of 45Ca2+ in the neurons which, in contrast to the MTX-evoked GABA release, was totally blocked in the presence of 1 mM Co2+. Whereas 500 nM tetrodotoxin was without significant effect, MTX-evoked GABA release was dependent on the presence of external Na+ and sensitive to nipecotic acid, a GABA uptake inhibitor. It is concluded that, on striatal neurons, MTX induced Na+ influx only in the presence of external Ca2+. The increase in cytoplasmic Na+ ions then triggers the release of GABA.  相似文献   

16.
A technique for studying the binding of La3+ to synaptosomes in a double-beam spectrophotometer, using murexide as indicator, is described. The binding of La3+ was very rapid and Scatchard plots revealed two components, with KD values of 0.6 and 27 microM in a Na+-free medium (sucrose medium) and 2.3 and 63 microM in an ionic medium containing 135 mM Na+. The binding of the cationic dye ruthenium red (RuR) showed only one site, with a KD of 3.7 microM. La3+ binding was partially inhibited by RuR and vice versa, and La3+ was also capable of partially displacing RuR previously bound to the synaptosomes, particularly in the sucrose medium. The release of labeled gamma-aminobutyric acid (GABA) stimulated by K+ depolarization was inhibited by La3+ concentrations at or above 1 microM, in the ionic medium, whereas in the sucrose medium 2.5 microM or higher La3+ concentrations notably stimulated the spontaneous release of both GABA and glutamic acid. It is concluded that La3+ and RuR share at least one type of binding site, which is probably the high-affinity La3+ site. Since both La3+ and RuR at low concentrations have been shown to block the depolarization-induced Ca2+ entry in synaptosomes, this site might be related to the voltage-dependent Ca2+ entry involved in neurotransmitter release.  相似文献   

17.
The efflux of 20 amino acids, induced by either high K+ concentration or veratrine, was determined in pigeon tectal slices. Ca2+-dependent, K+-induced release of beta-alanine, gamma-aminobutyric acid (GABA), and glutamate was observed. Veratrine caused release of the same amino acids plus glycine in a tetrodotoxin-sensitive manner. beta-Alanine had a strong inhibitory effect on the activity of tectal neurons which was blocked by strychnine but not by bicuculline. The results indicated a transmitter function for beta-alanine in the optic tectum, and were consistent with the previously proposed transmitter role of GABA and glutamate in this structure.  相似文献   

18.
Increased Ca2+ influx serves as a signal that initiates multiple biochemical and physiological events in neurons following depolarization. The most widely studied of these phenomena is the release of neurotransmitters. In sympathetic neurons, depolarization also increases the rate of synthesis of the transmitter norepinephrine (NE), via an activation of the enzyme tyrosine hydroxylase (TH), and this effect also seems to involve Ca2+ entry. We have examined whether the mechanism of Ca2+ entry relevant to TH activation is via voltage-sensitive Ca2+ channels and, if so, whether the type of Ca2+ channel involved is the same as that involved in the stimulation of NE release. We have investigated the isolated rat iris, allowing us to examine transmitter biosynthesis and release in sympathetic nerve terminals in the absence of sympathetic cell bodies and dendrites. Potassium depolarization produced a three- to fivefold increase in TH activity and an approximately 100-fold increase in NE release. Both effects were dependent on Ca2+ being present in the extracellular medium, and both were inhibited by omega-conotoxin (1 microM), which inhibits N-type voltage-sensitive Ca2+ channels. In contrast, the dihydropyridine nimodipine (1-3 microM), which blocks L-type Ca2+ channels, had no effect on either measure. These data support the hypothesis that increases in NE biosynthesis and release in sympathetic nerve terminals during periods of depolarization are both initiated by an influx of Ca2+ through voltage-sensitive Ca2+ channels and that a similar type of Ca2+ channel is involved in both processes.  相似文献   

19.
The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.  相似文献   

20.
In this study, the properties of ischemic condition-induced and veratridine-evoked [3H]noradrenaline ([3H]NA) release from rat spinal cord slices were compared. It was expected that ischemia mimicked by oxygen and glucose deprivation results in the impairment of Na+/K+ -ATPase with a consequent elevation of the intracellular Na+ -level which reverses the NA carrier and promotes excessive NA release, and veratridine, by the activation of Na+ channels, releases NA both carrier-mediated and Ca2+ -dependent, i.e. vesicular manner. In our experiments, veratridine (1-100 microM) dose-dependently increased the resting [3H]NA release, and its effect was only partially blocked by low temperature or the lack of external calcium, whereas the sodium channel inhibitor tetrodotoxin (TTX, 1 microM) completely prevented it, indicating that veratridine induces NA release via axonal depolarization and reversing the transporters by eliciting Na+ -influx. In contrast to TTX, the local anesthetic lidocaine (100 microM) only partially blocked the veratridine-induced [3H]NA release due to its inhibitory action on K+ channels. The ischemia-induced [3H]NA release was abolished at 12 degrees C, a temperature known to block only the transporter-mediated release of transmitters. However, lidocaine was also partially effective to reverse the action of ischemia on the NA release, indicating that lidocaine is not a useful compound in the treatment of spinal cord-injured patients against the excessive excytotoxic NA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号