首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Gut content analysis using molecular techniques can help elucidate predator‐prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species‐specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores’ main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator‐prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5‐fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator‐prey interactions in tiny species such as mites, which include important agricultural pests and their predators.  相似文献   

6.
7.
Aims: To verify the specificity of a PCR assay for the identification and diagnosis of Edwardsiella ictaluri. Methods and Results: An Edwardsiella ictaluri‐specific PCR assay was developed utilizing two features of the ribosomal DNA gene clusters. The first feature is the presence of two ribosomal gene clusters located in tandem to one another (the inter‐ribosomal spacer, IRS). This characteristic is present in the Edwardsiella genus but absent in the other sequenced members of the Enterobacteriaceae. The second feature is the presence of an intervening sequence (IVS) in the 23S rRNA gene of Edw. ictaluri. To verify the specificity of this assay, we tested genomic DNA from a variety of bacterial species. The IVS/IRS PCR assay results in an c. 2000‐bp product from all Edw. ictaluri isolates tested, but not from any other species including Edwardsiella tarda. Conclusions: The IVS/IRS PCR assay is highly specific for Edw. ictaluri and useful as a tool for identifying this pathogen. Significance and Impact of the Study: This research verifies the specificity of PCR‐based assay for Edw. Ictaluri, and we describe this assay as a highly versatile diagnostic tool for its identification.  相似文献   

8.
9.
10.
The diagnosis of human T ‐cell leukemia virus type 1 (HTLV‐1) infection in Japan is usually performed by serological testing, but the high rate of indeterminate results from western blotting makes it difficult to assess the infection accurately. Nucleic acid tests for HTLV‐1 and/or HTLV‐2 are used to confirm infection with HTLV‐1 and/or HTLV‐2 and are also used for the follow‐up of HTLV‐1 related diseases. To prepare a highly sensitive method that can discern infection with HTLV‐1 and HTLV‐2, a multiplex quantitative polymerase chain reaction (qPCR) by large‐scale primer screening was developed. Sensitivity and specificity were evaluated by serial dilution of cell lines and by testing with known clinical samples. The resulting multiplex qPCR can detect about four copies of HTLV‐1 provirus per 105 cells. Moreover, HTLV‐1 provirus could be detected in 97.2% (205 of 211) of HTLV‐1 seropositive clinical samples. These sensitivities were sufficiently high compared with the methods reported previously. Also, all the HTLV‐2 seropositive clinical samples tested were found to be positive by this method (three of three). In conclusion, this method can successfully and simultaneously detect both types of HTLV‐1 and HTLV‐2 provirus with extremely high sensitivity.  相似文献   

11.
12.
A one‐step multiplex RT‐PCR method has been developed for the simultaneous detection of four viruses frequently occurring in tobacco (Cucumber mosaic virus, Tobacco mosaic virus, Tobacco etch virus and Potato virus Y). Four sets of specific primers were designed to work with the same reaction reagents and cycling conditions, resulting in four distinguishable amplicons representative of the four viruses independently. This one‐step multiplex RT‐PCR is consistently specific using different combinations of virus RNA as templates, and no non‐specific band was observed. It has high sensitivity compared to single RT‐PCR. Moreover, field samples in China can be tested by this method for virus detection. Our results show that one‐step multiplex RT‐PCR is a high‐throughput, specific, sensitive method for tobacco virus detection.  相似文献   

13.
14.
Meloidogyne minor is a small root‐knot nematode that causes yellow patch disease in golf courses and severe quality damage in potatoes. It was described in 2004 and has been detected in The Netherlands, England, Wales, Northern Ireland, Ireland and Belgium. The nematode often appears together with M. naasi on grasses. It causes similar symptoms on potato tubers as M. chitwoodi and M. fallax, which are both quarantine organisms in Europe. An accurate identification method therefore is required. This study describes a real‐time PCR assay that enables the identification of M. minor after extraction of nematodes from soil or plant samples. Alignments of sequences of rDNA‐ITS fragments of M. minor and five other Meloidogyne species were used to design a forward primer Mminor_f299, a specific primer Mminor_r362 and the specific MGB TaqMan probe P_Mm_MGB321. PCR with this primers and probe results in an amplicon of 64 bp. The analytical specificity of the real‐time PCR assay was assessed by assaying it on six populations of M. minor and on 10 populations of six other Meloidogyne species. Only DNA from M. minor gave positive results in this assay. The assay was able to identify M. minor using DNA from a single juvenile independent from the DNA extraction method used.  相似文献   

15.
16.
Aims: To validate a real‐time PCR test for the diagnosis of Glässer’s disease, a major pig disease caused by Haemophilus parasuis. Methods and Results: The specificity of a real‐time PCR amplifying the inf B gene was validated with 68 H. parasuis isolates and 36 strains of closely related species. As well, 239 samples of DNA from tissues and fluids of 16 experimentally challenged animals were tested with the real‐time PCR, and the results were compared with culture and a conventional PCR. The real‐time PCR produced significantly more positive results than the conventional PCR (165 vs 86). Conclusions: The sensitivity of the real‐time PCR combined with high specificity makes it a very valuable tool for the diagnosis of Glässer’s disease. Significance and Impact of Study: This new method will improve the ability of laboratories to diagnose Glässer’s disease, especially in laboratories where the culture method for H. parasuis is not optimal.  相似文献   

17.
18.
19.
RNA editing in plants, animals, and humans modifies genomically encoded cytidine or adenosine nucleotides to uridine or inosine, respectively, in mRNAs. We customized the MassARRAY System (Sequenom Inc., San Diego, CA, USA, www.sequenom.com ) to assay multiplex PCR‐amplified single‐stranded cDNAs and easily analyse and display the captured data. By using appropriate oligonucleotide probes, the method can be tailored to any organism and gene where RNA editing occurs. Editing extent of up to 40 different nucleotides in each of either 94 or 382 different samples (3760 or 15 280 editing targets, respectively) can be examined by assaying a single plate and by performing one repetition. We have established this mass spectrometric method as a dependable, cost‐effective and time‐saving technique to examine the RNA editing efficiency at 37 Arabidopsis thaliana chloroplast editing sites at a high level of multiplexing. The high‐throughput editing assay, named Multiplex RT‐PCR Mass Spectrometry (MRMS), is ideal for large‐scale experiments such as identifying population variation, examining tissue‐specific changes in editing extent, or screening a mutant or transgenic collection. Moreover, the required amount of starting material is so low that RNA from fewer than 50 cells can be examined without amplification. We demonstrate the use of the method to identify natural variation in editing extent of chloroplast C targets in a collection of Arabidopsis accessions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号