首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: How is vegetation succession on coal mine wastes under a Mediterranean climate affected by the restoration method used (topsoil addition or not)? How are plant successional processes influenced by local landscape and soil factors? Location: Reclaimed coal mines in the north of Palencia province, northern Spain (42°47′‐42°50′ N, 4°32′‐4°53′ W). Methods: In Jun–Jul 2008, vascular plant species cover was monitored in 31 coal mines. The mines, which had been restored using two restoration methods (topsoil addition or not), comprised a chronosequence of different ages from 1 to 40 yr since restoration started. Soil and environmental factors at each mine were monitored and related to species cover using a combination of ordination methods and Huisman–Olff–Fresco modeling. Results: Plant succession was affected by restoration method . Where topsoil was added, succession was influenced by age since restoration and soil pH. Where no topsoil was added, soil factors seem to arrest succession. Vegetation composition on topsoiled sites showed a gradient with age, from the youngest, with early colonizing species, to oldest, with an increase in woody species. Vegetation on non‐topsoiled sites comprised mainly early‐successional species. Response to age and pH of 37 species found on topsoiled mines is described. Conclusions: Restoration of coal mines under this Mediterranean climate can be relatively fast if topsoil is added, with a native shrub community developing after 15 yr. However, if topsoil is not used, it takes more than 40 yr. For topsoiled mines, the species found in the different successional stages were identified, and their tolerance to soil pH was derived. This information will assist future restoration projects in the area.  相似文献   

2.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

3.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

4.
表土在日本植被恢复中的应用   总被引:3,自引:1,他引:2  
土壤种子库具有区域特有的物种组成和遗传特性,对维持物种多样性和种群密度起到重要作用.表土是具有植被恢复潜在能力的绿化材料.本文在参考大量日本文献的基础上,介绍了利用表土进行植被恢复的特点及分类,从表土混合比例、坡面环境、表土采集深度等3个方面归纳分析了利用表土进行植被恢复的方式,介绍了其在森林、道路、湿地、废弃地等不同类型生境中的应用.最后针对表土在植被恢复应用中存在的问题提出了今后的研究课题:应加强表土在植被恢复中的应用研究,明确绿化技术、恢复目标及表土作为绿化材料的适用性调查方法和标准,开发低成本、高效率的新型表土利用方法.  相似文献   

5.
Plains rough fescue (Festuca hallii), once dominant in grasslands of the Northern Great Plains, has been reduced to remnants mainly through agricultural and energy sector development. This study assessed the impacts of oil and gas well site disturbances on plains rough fescue grassland to predict successional trends following disturbance. We examined trends in vegetation cover, richness, diversity, and community composition for two construction techniques (topsoil stripping, minimum disturbance), three revegetation methods (agronomic seed mix, native seed mix, natural recovery), and two reclamation scenarios (reclaimed within < 10 yrs; reclaimed within > 10 yrs) relative to adjacent undisturbed prairie (reference sites) over 28 years in 33 grassland sites. Reclamation success was more closely related to methods of construction and revegetation than years since reclamation. Species richness, diversity, both native and non-native species cover, and species composition were similar between undisturbed prairie and areas subject to minimum disturbance and natural recovery. In contrast, undisturbed prairie differed from areas with topsoil stripping and seeding to either agronomic or native species. Plant community composition on minimum disturbance sites with natural recovery was returning to a predisturbed plains rough fescue community within 10 years after reclamation. Impacts of construction method that involved intensive soil handling and seeding with native or non-native seed mixes were disruptive to recovery of fescue grassland. We therefore recommend retaining grassland sod intact through minimum disturbance and utilizing natural recovery as the best option for successful reclamation of native rough fescue grassland after well site disturbance.  相似文献   

6.
Water regime of metal-contaminated soil under juvenile forest vegetation   总被引:1,自引:0,他引:1  
In a three-year factorial lysimeter study in Open Top Chambers (OTCs), we investigated the effect of topsoil pollution by the heavy metals Zn, Cu, and Cd on the water regime of newly established forest ecosystems. Furthermore, we studied the influence of two types of uncontaminated subsoils (acidic vs. calcareous) and two types of irrigation water acidity (ambient rainfall chemistry vs. acidified chemistry) on the response of the vegetation. Each of the eight treatment combinations was replicated four times. The contamination (2700 mg kg–1 Zn, 385 mg kg–1 Cu and 10 mg kg–1 Cd) was applied by mixing filter dust from a non-ferrous metal smelter into the upper 15 cm of the soil profile, consisting of silty loam (pH 6.5). The same vegetation was established in all 32 lysimeters. The model forest ecosystem consisted of seedlings of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of herbaceous understorey plants. Systematic and significant effects showed up in the second and third growing season after canopies had closed. Evapotranspiration was reduced in metal contaminated treatments, independent of the subsoil type and acidity of the irrigation water. This effect corresponded to an even stronger reduction in root growth in the metal treatments. In the first two growing seasons, evapotranspiration was higher on the calcareous than on the acidic subsoil. In the third year the difference disappeared. Acidification of the irrigation water had no significant effect on water consumption, although a tendency to enhance evapotranspiration became increasingly manifest in the second and third year. Soil water potentials indicated that the increasing water consumption over the years was fed primarily by intensified extraction of water from the topsoil in the lysimeters with acidic subsoil, whereas also lower depths became strongly exploited in the lysimeters with calcareous subsoil. These patterns agreed well with the vertical profiles of fine root density related with the two types of subsoil. Leaf transpiration measurements and biomass samples showed that different plant species in part responded quite differently and occasionally even in opposite ways to the metal treatments and subsoil conditions. They suggest that the year-to-year changes in treatment effects on water consumption and extraction patterns were related to differences in growth dynamics, as well as to shifts in competitiveness of the various species. Results showed that the uncontaminated subsoil offered a possibility to compensate the reduction in root water extraction in the topsoil under drought, as well as metal stress.  相似文献   

7.
The relationship between secondary succession, soil disturbance, and soil biological activity were studied on a sagebrush community (Artemisia tridentata) in the Piceance Basin of northwestern Colorado, U.S.A. Four levels of disturbance were imposed. I: the vegetation was mechanically removed and as much topsoil as possible was left; 2: the vegetation was mechanically removed and the topsoil scarified to a depth of 30 cm; 3: topsoil and subsoil were removed to a depth of 1 m, mixed and replaced; 4: topsoil and subsoil were removed to a depth of 2 m and replaced in a reverse order. Plant species composition, dehydrogenase and phosphatase enzymatic activity, mycorrhizae infection potentials, and percent organic matter were the variables measured.Treatment 4 drastically altered the pattern of vegetation succession. Treatments 2, 3, and 4 started with Salsola iberica as the dominant species but six years later, 3 and to lesser extent 2 changed in the direction of the species composition of 1, dominated by perennial grasses and perennial forbs. Treatment 4 developed a shrub dominated community. The rate of succession was not decreased by the increased levels of disturbance. Both dehydrogenase enzyme activity and mycorrhizae infection potential (MIP) increased with the change from Salsola iberica to a vegetation dominated by either perennial grasses and forbs or shrubs. The intensity of disturbance in 2, 3, and 4 reduced drastically dehydrogenase activity and MIP, but in six years they recovered to levels comparable to 1. Phosphatase enzyme activity and organic matter were unrelated to species composition but related to treatment and time elapsed. In both cases a significant decrease was observed throughout the six-year period.Nomenclature followsThis study was funded by the United States Department of Energy under Contract No. DE-AS02-76EV04018.  相似文献   

8.
Question: What is the mechanism that underlies long‐term maintenance of high herbaceous productivity after a single application of phosphorus (4.5 gP m?2 and 9 gP m?2) in a hilly Mediterranean environment in a phosphorus‐deficient ecosystem? Location: Inland, 15 km E of the Mediterranean coast, W Galilee, Israel (35°15′E, 33°01′N; 500 m asl). Methods: The experiment was established in 1988. Multi‐year data on above‐ground biomass, botanical composition, P content of vegetation and soil, and the grazing management context of the experiment were integrated to construct a feasible account of the P dynamics of the ecosystem. Results: The productivity of the herbaceous component already responded to P application in the first year. The effect on the shrubby component of the ecosystem was marginal. The available (bicarbonate extractable) P in the upper soil layer peaked in the year after application of P and then declined to the original level within 7 years. Despite the decline in available soil P, a high, fluctuating level of herbaceous biomass production was maintained for 20 years. Legume species (Fabaceae) became a prominent constituent of the herbaceous vegetation after the P pulse. Conclusions: The long‐term shift in productivity of the herbaceous component of the grazed ecosystem was triggered by a nutritional pulse that induced a feedback loop based on changes in botanical composition of the herbaceous vegetation, the animal–vegetation interaction, grazing and supplementary feeding regimen of the cattle.  相似文献   

9.
石漠化是我国西南喀斯特地区生态修复最严重的障碍,植被恢复是石漠化治理的重要途径。近50年来,我国开展了大量石漠化植被恢复的实践与研究,包括自然恢复与人工修复。但是,长期以来缺乏对已完成人工修复的植被的演替特征和修复效果的研究,而人工修复植被的效果评价能为石漠化生态修复提供理论依据与实践经验。以石林风景区中两类人工修复植被——栽植植被(PV)与飞播植被(ASV)为研究对象,以地带性自然植被(ZNV)为对照,研究人工修复植被中木本植物群落组成、群落多样性和种群生态位特征,以期揭示不同人工修复方式下的植被构成规律以及对有限资源的利用程度。结果表明:(1)在地带性自然植被、栽植植被和飞播植被3种植被类型中分别记录到木本植物92种(45科80属)、138种(50科101属)与44种(26科37属),3种植被类型中的共有种12种。(2)3种植被类型的Patrick丰富度指数与Shannon-Wiener多样性指数排序均呈现为地带性自然植被>栽植植被>飞播植被(P<0.01),栽植植被与地带性自然植被之间的Jaccard相似性指数为0.14,飞播植被与地带性自然植被之间的Jacca...  相似文献   

10.
Survival of vegetation on soil-capped mining wastes is often impaired during dry seasons due to the limited amount of water stored in the shallow soil capping. Growth and survival of Rhodes grass (Chloris gayana) during soil drying on various layered capping sequences constructed of combinations of topsoil, subsoil, seawater-neutralised residue sand and low grade bauxite was determined in a glasshouse. The aim was to describe the survival of Rhodes grass in terms of plant and soil water relationships. The soil water characteristic curve and soil texture analysis was a good predictor of plant survival. The combination of soil with a high water holding capacity and low soil water diffusivity (e.g. subsoil with high clay contents) with soil having a high water holding capacity and high diffusivity (e.g. residue sand) gave best survival during drying down (up to 88 days without water), whereas topsoil and low grade bauxite were unsuitable (plants died within 18–39 days). Clayey soil improved plant survival by triggering a water stress response during peak evaporative water demand once residue sand dried down and its diffusivity fell below a critical range. Thus, for revegetation in seasonally dry climates, soil capping should combine one soil with low diffusivity and one or more soils with high total water holding capacity and high diffusivity.  相似文献   

11.
Many plants are adapted to an eroded landscape with a large proportion of virgin soil. Open and disturbed soils are today almost only restricted to agricultural fields with high loads of fertilizers. We conducted a pot experiment in order to investigate growth and nutritional constraints of one calcicole species, Anisantha (syn. Bromus) tectorum, and one calcifuge species, Rumex acetosella, in decalcified topsoil and recently exposed calcareous subsoil from a field experiment in sandy grassland. In the pot experiment we implemented one treatment where we limed topsoil with CaCO3 to the same amount as in subsoil.The subsoil had approximately 10% CaCO3 and both species grew less in this soil compared to the topsoil, which had less than 1% CaCO3. Germination rate of A. tectorum was higher in subsoil than in topsoil or limed topsoil. P fertilization of the limed topsoil counteracted the negative liming effect for A. tectorum, but only partly so for R. acetosella. P fertilization of subsoil increased the shoot biomass of A. tectorum, but not of R. acetosella. P concentration in plants was not reduced when growing on subsoil or limed topsoil compared to topsoil. The results show that lime addition may reduce the P availability also to calcicole species such as A. tectorum and we found indications for that Ca toxicity may be a causing factor for the calcifuge behavior of R. acetosella. The significance of the results for conservation management practices in sandy grasslands is discussed.  相似文献   

12.
Velvet beans, fast growing leguminous cover crops used in the humid tropics, are shallow rooted on acid soils. This might be due to an inherent branching pattern, to an intrinsic toxicity of the acid subsoil or to a relative preference for root development in the topsoil. Such preference could be based on soil chemical factors in the subsoil or on physical factors such as penetration resistance or aeration. In a field experiment with two species of velvet bean (Mucuna pruriens var. utilis and M. deeringiana) all topsoil was removed and plants were sown directly into the acid subsoil. Root development was neither affected by this treatment nor by P fertilization or liming. In the absence of topsoil good root development in the exposed upper layer of subsoil was possible, so the hypothesis of a toxicity per se of the subsoil could be rejected. To test whether poor root development in the subsoil in the presence of topsoil is due to an inherent branching pattern of the plant or to a relative preference for topsoil, a modified in-growth core technique was used. Local topsoil and subsoil and an acid soil with a higher exchangeable Al content were placed in mesh bags at different depths and at different bulk densities, with and without lime and/or P fertilizer. A comparison of root development in mesh bags placed in the topsoil or subsoil showed that position and thus inherent branching pattern is not important. Root development in the subsoil was poor when this soil was placed in a mesh bag in the topsoil, but in an acid soil of much higher exchangeable Al content and higher percentage Al saturation more roots developed. In a second experiment in mesh bags, bulk density of the repacked soil in the range 1.0–1.5 g cm-3 had no significant effect on root development. P fertilization and a high rate of liming of the soil placed in the mesh bag had a positive effect on root length density. It is concluded that poor root development in the acid subsoil under field conditions is due to a relative preference for topsoil. Al saturation and bulk density of the soil are not directly involved in this preference, but differences in availability of P and Mg or in Ca/Al ratios might play a role.  相似文献   

13.
藏东南典型暗针叶林不同土壤剖面微生物群落特征   总被引:4,自引:1,他引:3  
焦克  张旭博  徐梦  刘晓洁  安前东  张崇玉 《生态学报》2021,41(12):4864-4875
深层土壤中的微生物群落对陆地生态系统养分和能量循环转化过程不可或缺,研究青藏高原典型暗针叶林带土壤微生物群落在土壤垂直剖面的变化特征,对深入认识高寒区域森林生态系统土壤微生物群落构建特征及全球变化影响预测具有重要意义。运用Illumina Miseq高通量测序技术和分子生态网络分析,研究藏东南色季拉山暗针叶林带表层(0-20 cm)和底层土壤(40-60 cm)微生物群落组成及分子生态网络结构。研究结果表明随着土壤深度增加,真菌和细菌的丰富度和Shannon多样性指数显著降低。主坐标分析(PCoA)显示土壤深度显著影响真菌和细菌的群落结构(P < 0.01)。不同微生物种群对土壤深度的响应有显著差异,座囊菌纲(Dothideomycetes)、银耳纲(Tremellomycetes)和拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)的相对丰度随剖面加深而显著降低,而古菌根菌纲(Archaeorhizomycetes)和绿弯菌门(Chloroflexi)则显著增加。分子生态网络分析发现,真菌网络以负相关连接为主(占总连接数65%-98%),而细菌网络以正相关连接为主(69%-75%),真菌和细菌网络中正相关连接的比例均随剖面加深而增加。底层土壤真菌和细菌网络的平均连接度和平均聚类系数均高于表层土壤,说明微生物网络随土壤深度的增加而变得更复杂。真菌网络的平均路径距离和模块性在底层土壤均大于表层土壤,意味着真菌网络应对环境变化的稳定性随剖面加深而增加,而细菌网络则正相反,在表层土壤的稳定性更强。真菌网络中连接节点的个数随剖面加深而增加,锤舌菌纲(Leotiomycetes)是连接网络模块的关键菌种;在细菌网络中模块枢纽和连接节点则随剖面加深而降低,并且放线菌门、变形菌门等关键种群在分子生态网络中的功能在表层和底层土壤有明显差异。综上所述,藏东南色季拉山暗针叶林带深层土壤中微生物群落特征与表层土壤有显著差别,揭示影响深层土壤微生物网络构建和稳定的关键种群,对深入理解和预测青藏高原森林生态系统对全球变化的响应与反馈有重要意义。  相似文献   

14.
Question: Does the relative importance of stochastic and deterministic factors change during primary succession? Location: Small depressions (potholes) located on Mount St. Helens, Washington (46°13′51″N, 122°09′10″W, 1290 m). Methods: Pothole vegetation was described in 1993, 1997 and from 2001 to 2008. Explanatory variables included location and elevation (spatial factors), soil factors and Lupinus lepidus cover from prior years (a fertility surrogate). RDA assessed species‐variable relationships. DCA calculated β diversity and within‐year heterogeneity. Flexible sorting classified the vegetation. Species composition, richness, cover, H′ and evenness were also calculated. Results: Vegetation cover increased through 2001, and then fluctuated due to changes in L. lepidus cover. Richness peaked in 2005, after which pioneer species began to decline as persistent evergreen species increased. The six CTs recognized in 2008 were more scattered than were the six different CTs from 2001. DCA demonstrated that woody and rhizomatous species increased as pothole vegetation became less variable. RDA revealed weak spatial relationships in 1993, 1997 and 2001; thereafter, environmental and biological factors became important. The species‐explanatory data relationship increased during this study from 10.2% to 36.0%, leaving 64.0% of the variation unexplained. Conclusions: This is the first temporal study to demonstrate that deterministic control of vegetation development increases during succession. Pothole vegetation has converged somewhat due to deterministic factors, but the initial effects of chance, local disturbances and history remain large and may prevent strong convergence.  相似文献   

15.
The goal of the present study was to assess a soil seed bank as an input seed source for revegetating lead/zinc (Pb/Zn) mine tailings. The seed bank source was abandoned farmland, whose top 10‐cm layer of topsoil contained 6,850 ± 377 seeds/m2 from 41 species. The seeds in the soil were principally distributed in the upper 0–2 cm, which held 75.8% of total seeds and 92.7% of species composition. The top 2‐cm layer of topsoil may be sufficient to serve the purpose of providing a seed source for revegetation on derelict lands, including mined lands. Four different thicknesses of topsoil (1, 2, 4, and 8 cm, redistributed from the total 0–10‐cm layer from the farmland) were field‐tested on the Pb/Zn mine tailings. There was no significant difference in seedling density among the 4 thickness treatments. Many seeds in the treatments with more than 1‐cm of topsoil were unable to emerge from the deeper layer. Seedlings in plots with topsoil of 1‐, 2‐ and 4‐cm failed to establish within 1 year due to the extremely high acidity (pH 2.39 to 2.76). A shallow layer of topsoil cannot neutralize the sulfuric acid generated from oxidation of pyrites in the tailings. For establishment of seedlings on metalliferous lands, an insulating layer such as subsoil, building rubble, or domestic refuse is necessary before covering with valuable topsoil. The woody legume Leucaena leucocephala grown on the tailings with a topsoil cover of 8‐cm was the most dominant species. Lead was accumulated in root, branch, stem bark, and xylem, which accounted for more than 80% of the total metal concentration in the plant. This portion of Pb will reside in the plant for a long period, while the smaller portion of Pb in the leaf (about 15%) could be returned to the environment as litter during growth. Woody plants may have an advantage in metal‐phyto‐remediation over herbaceous plants.  相似文献   

16.
An analysis of the effects of topsoil handling and storage methods was undertaken to optimize the potential rehabilitation of southwest Western Australian Banksia woodland species present before site disturbance. An increase in the depth of topsoil stripped from the Banksia woodland, from 10 to 30 cm, correlated to decreasing seedling recruitment from the soil seedbank by a factor of three following in situ respreading in an area to be restored. There was no significant difference in total seedling recruitment in situ at two depths of spread, 10 cm and 30 cm. These results concur with an ex situ trial on the effects of depth of seed burial on seedling recruitment that showed most species failed to emerge from depths greater than 2 cm. In situ stockpiling of the woodland topsoil for 1 or 3 years demonstrated a substantial and significant decline in seedling recruitment to 54% and 34% of the recruitment achieved in fresh topsoil, respectively. Stripping and spreading during winter substantially depressed seedling recruitment, compared with autumn operations, as did in situ stockpiling followed by spreading in the wet season, or stockpiling in winter followed by spreading in spring. No loss in total seedling recruitment occurred when replaced topsoil and subsoil were ripped to 80 cm following spreading of topsoil in sites to be restored. Conclusions from this study are that (1) topsoil provides a useful source of seeds for rehabilitation of Banksia woodland communities in the southwest of Western Australia, (2) correct handling of the topsoil, stripped and replaced fresh and dry (autumn direct return) to the maximum depths of 10 cm, can be used to optimize revegetation of species‐rich plant communities with this type of seedbank, and (3) ripping of topsoil and subsoil to ease compaction of newly restored soils does not diminish the recruitment potential of the soil seedbank in the replaced topsoil.  相似文献   

17.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

18.
The establishment success of woody plant species at 56 revegetation sites, four to 26 years old, across the Meandu open‐cut coal mine in south‐east Queensland was assessed. The revegetation process involved returning stockpiled topsoil, deep ripping and mechanical sowing of a mix of native seeds. Blakes Wattle (Acacia blakei) and less often Black Wattle (A. leiocalyx), both primarily derived from respread topsoil seed, dominate the vegetation canopy at 59% and 20% of revegetation sites, respectively. The additional sowing of seeds of many tree and shrub species within the sites has had limited success with most failing to persist or grow well. Revegetation management, for example selective thinning of acacias (Acacia spp.) saplings within the first 5 years is recommended to release the competition pressure on the poorly performing tree species. This will also allow opportunities for other less well represented shrub and herb species to persist. This study has shown that a range of tree and shrub species, including Eucalyptus spp., are performing poorly under the current revegetation regime, suggesting adjustments to revegetation species selection and/or methodologies are needed. The natural colonization of woody native species within the sites from nearby remnant vegetation is shown to be limited to only four species, and therefore is unlikely to significantly supplement the species diversity of the revegetation.  相似文献   

19.
Question: In the boreal forest of eastern Canada, how does forest vegetation change in the sustained absence of fire? Location: Eastern boreal forest in Quebec's North Shore region, Canada (49°30′–50°00′N; 67°30′–68°35′W). Methods: Aerial photos from three different periods (1930, 1965 and 1987) were used to characterize changes in vegetation composition in 23 scenes of 200 ha. Time since fire, presence of secondary disturbances and data on soil and topographic variables were obtained. Ordination and clustering techniques were used to define compositional trajectories of change over the 57‐yr period. These trajectories were further grouped into pathways based on compositional changes, time since fire and preferential deposit‐drainage types. Results: Among the 26 compositional trajectories, three successional pathways were distinguished. Two start post‐fire succession with a dominance of intolerant hardwood. In one of these, this is followed by an increase in Abies balsamea, while in the second the importance of Picea mariana increases with time. In the third pathway P. mariana is an important component from the outset. In this pathway, we observed modest fluctuation in the relative dominance of P. mariana and A. balsamea and variation in stand structure. Conclusion: The boreal forest vegetation of Eastern Canada is diverse and dynamic even in the absence of fire, notably under the influence of partial disturbances. Such disturbances can be associated with changes in composition or stand structure. The development of management strategies aimed at maintaining stand diversity by emulating a broader variety of partial and secondary disturbances should be encouraged.  相似文献   

20.
盛浩  宋迪思  周萍  夏燕维  张杨珠 《生态学报》2017,37(14):4676-4685
了解底土溶解性有机质(DOM)的数量和化学结构对土地利用变化的响应,对科学评价区域土壤有机质动态和碳库稳定性具有重要意义。通过选取花岗岩红壤丘陵区同一景观单元的天然林地(常绿阔叶林)以及由此转变而来的杉木人工林、板栗园和坡耕地,采用化学分析结合光谱扫描(紫外光谱、二维荧光光谱和傅里叶变换红外光谱)技术,研究底土(0.2—1 m)和表土(0—0.2 m)DOM数量和结构对土地利用变化的响应差异,结果表明:58%—87%的DOM贮存在底土中。天然林地土壤的DOM数量最为丰富,底土DOM的宏观化学结构比表土更为简单,以碳水化合物、类蛋白为主。天然林转变为其他利用方式后,底土DOM的损失量(26%—41%)超过表土(12%—49%),冬季比夏季更为凸显;这反映底土DOM数量对人为干扰和植被变化的高度敏感性。同时,底土DOM宏观化学结构趋于复杂化,芳香类、烷烃类和烯烃类的化学抗性物质出现积累的现象。DOM光谱曲线形状、特定峰值、特征值对土地利用的响应敏感,对人为干扰后植被、土壤有机质的变化具有生态指示意义。研究显示,天然林地转变为其他利用方式后,不仅导致底土DOM的损失,也显著降低土壤有机质品质,长期上削弱底土的碳库稳定性和碳吸存能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号