首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous experiments have been established to examine the effect of plant diversity on the soil microbial community. However, the relationship between plant diversity and microbial functional diversity along broad spatial gradients at a large scale is still unexplored. In this paper, we examined the relationship of plant species diversity with soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Preliminary detrended correspondence analysis (DCA) indicated that plant composition showed a significant separation along the axis 1, and axis 1 explained the main portion of variability in the data set. Moreover, DCA-axis 1 was significantly correlated with soil microbial biomass C (r = 0.735, P = 0.001), microbial catabolic activity (average well color development; r = 0.775, P < 0.001) and microbial functional diversity (catabolic diversity: r = 0.791, P < 0.001 and catabolic richness: r = 0.812, P < 0.001), which suggested thatsome relationship existed between plant composition and the soil microbial community along the spatial gradient at a large scale. Soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness showed a significant, linear increase with greater plant species richness. However, many responses that we observed could be explained by greater aboveground plant biomass associated with higher levels of plant diversity, which suggested that plant diversity impacted the soil microbial community mainly through increases in plant production.  相似文献   

2.
Plants evolved in response to climatic conditions, which shaped their geographic distribution, functional traits and genetic composition. In the face of climatic changes, plants have to react by either genetic adaptation, phenotypic plasticity or geographic range shift. Their reaction potential depends on their phenotypic and genetic variability which can be evaluated through regional scale trait estimates, however, little is known here about tropical African plants. To start filling this gap of knowledge, the aim of this study was to estimate the phenotypic variability in a widespread perennial herb from the understorey of tropical African rainforests: Sarcophrynium prionogonium (Marantaceae). We surveyed 211 individuals from eight populations distributed across four sites in Cameroon covering largely the climatic range of the study species. Fourteen key functional traits were measured monthly for 18 months (2013–2014). Individuals of the study species persisted under a wide range of environmental conditions and there was considerable intraspecific variability within and across populations. Still, plant vegetative growth decreased with dryness. Productivity was positively related to a combination of high temperatures and precipitation and under these favourable conditions strongly shaped by light. Seasonal patterns of flower and fruit development were strongly associated with seasonal rainfall. Thus, the predicted increased dryness in tropical Africa might be disadvantageous for the study species. In the past, plants reacted to such aridification tendencies (e.g. during the Pleistocene glacial cycles) by retracting to moist refugia. The current climatic changes, however, being much faster and larger might provide new challenges.  相似文献   

3.
The degree of serotiny (i.e. the proportion of follicles remaining closed in each year's crop of cones since the last fire) was measured in Bank-sia attenuata, B. menziesii and B. prionotes at five sites along a climatic gradient extending 500 km north of Perth, Western Australia. The decrease in annual rainfall and increase in average temperature along the gradient paralleled a decrease in plant height and an increase in the degree of serotiny of all species. Extreme serotiny was recorded in the scrub-heath at the xeric end of the gradient whereas two species were essentially non-serotinous in the low woodland at the most mesic site. It is concluded that degree of serotiny is related to the fire characteristics of the site which depend on plant height. In xeric scrub-heath, the entire canopies of the Banksia spp. are consumed by fire which promotes massive release of seed. This facilitates recruitment in an otherwise unpredictable and unreliable seedbed. In mesic woodland, where cones rarely come into contact With flames, seeds are released spontaneously and site conditions are more conducive to recruitment in the inter-fire period.  相似文献   

4.
北京地区主要草坪草种的质量表现和气候指标研究   总被引:3,自引:0,他引:3  
杜尧东  胡林 《生态学杂志》2005,24(11):1258-1262
利用田间试验和平行脱测气象资料,研究了暖季型和冷季型草种在北京地区的质量表现和气候指标。结果表明,暖季型草种的质量表现呈单峰曲线,仅夏季质量表现良好。冷季型草坪质量表现呈双峰曲线,春季5、6月份及秋季9、10月份表现良好。冷季型草种的返青与有效积温关系密切。同时也与温度的界限值有关。≥10℃的有效积温可以作为各草种第1次质量表现良好时期的始日指标。≤10℃的有效胁迫积温可以作为冷季型草种的褪绿和第2次质量表现良好时期的终日指标;≤23℃的有效胁迫积温可以作为暖季型草种的褪绿和质量表现良好时期的终日指标;温湿指数的累积可以作为草坪草发病、痫斑恢复、冷季型草种第1次质量表现良好时期终日和第2次质量表现良好时期始目的指标。针对每个草种,确定了这些指际的具体数值。  相似文献   

5.
6.
Aims Studies along environmental gradients have shown that intraspecific trait variation (ITV) may contribute considerably to community-level trait variation. However, we lack knowledge about how the extent of ITV varies on a local scale and whether a varying extent of ITV is related to differences in local environmental site and plant community characteristics.  相似文献   

7.
We measured the response of dark respiration (Rd) to temperature and foliage characteristics in the upper canopies of tree species in temperate rainforest communites in New Zealand along a soil chronosequence (six sites from 6 years to 120,000 years). The chronosequence provided a vegetation gradient characterised by significant changes in soil nutrition. This enabled us to examine the extent to which changes in dark respiration can be applied across forest biomes and the utility of scaling rules in whole-canopy carbon modelling. The response of respiration to temperature in the dominant tree species differed significantly between sites along the sequence. This involved changes in both Rd at a reference temperature (R10) and the extent to which Rd increased with temperature (described by Eo, a parameter related to the energy of activation, or the change in Rd over a 10°C range, Q10). Site averaged Eo ranged from 44.4 kJ mol–1 K–1 at the 60-year-old site to 26.0 kJ mol–1 K–1 at the oldest, most nutrient poor, site. Relationships between respiratory and foliage characteristics indicated that both the temperature response of respiration (Eo or Q10) and the instantaneous rate of respiration increased with both foliar nitrogen and phosphorus content. The ratio of photosynthetic capacity (Whitehead et al. in Oecologia 2005) to respiration (Amax/Rd) attained values in excess of 15 for species in the 6- to 120-year-old sites, but thereafter decreased significantly to around five at the 120,000-year-old site. This indicates that shoot carbon acquisition is regulated by nutrient limitations in the retrogressing ecosystems on the oldest sites. Our findings indicate that respiration and its temperature response will vary according to soil age and, therefore, to soil nutrient availability and the stage of forest development. Thus, variability in respiratory characteristics for canopies should be considered when using models to integrate respiration at large spatial scales.  相似文献   

8.
9.
Abstract. The central grassland region of North America is characterized by large gradients of temperature and precipitation. These climatic variables are important determinants of the distribution of plant species, and strongly influence plant morphology and tissue chemistry. We analysed regional patterns of plant litter quality as they vary with climate in grassland ecosystems throughout central North America including tall‐grass prairie, mixed grass prairie, shortgrass steppe, and hot desert grasslands. An extensive database from the International Biological Program and the Long‐Term Ecological Research Program allowed us to isolate the effects of climate from those of plant functional types on litter quality. Our analysis of grass species confirms a previously recognized positive correlation between C/N ratios and precipitation. Precipitation exhibited a similar positive relationship with lignin/N and percent lignin. Although there was no significant correlation between temperature and C/N, there was a significant positive relationship between temperature and both percent lignin and lignin/N. Among functional types, C3 grasses had a slightly lower C/N ratio than C4 grasses. Tall grass species exhibited higher C/N, lignin/N, and percent lignin than short grass species. This understanding of the regional patterns of litter quality and the factors controlling them provides us with a greater knowledge of the effect that global change and the accompanying feedbacks may have on ecosystem processes.  相似文献   

10.
We studied the influence of environmental factors relating to climate, soil and vegetation cover on total species richness, species richness of different life-forms and species composition of plant communities occurring in Quercus ilex woodlands, across a 450-km long transect in Northern Algeria constituting a gradient of aridity and human use. We sampled vegetation and collected environmental data in 81 10 m × 10 m plots in five zones representing the largest Q. ilex woodlands throughout the study area, analysing them within an a priori hypothesis framework with the use of Path Analysis. Changes in plant diversity were mainly influenced by environmental factors related to precipitation and temperature regimes, as well as by total plant cover. In particular, changes in species composition were determined by factors associated with the temperature regime through their influence on both woody and annual herbaceous plant richness, and by factors related to the precipitation regime through their influence on perennial herbaceous plant richness, likely due to the differential tolerances of these functional groups to cold and water stress. Our results emphasize the importance of differences in environmental adaptability of the most important life-forms with regard to explaining compositional change (beta diversity) along aridity gradients, and the mediator role of total plant cover in relation to the effects of soil conditions on plant diversity.  相似文献   

11.
周玮  李洪波  曾辉 《植物生态学报》2018,42(11):1094-1102
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。  相似文献   

12.
《植物生态学报》2018,42(11):1094
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。  相似文献   

13.
We reported on quantitative anatomical comparisons of reed culms grown under a wide range of water depth (from −10 to +230 cm). The study focused mainly on the above water parts of ramets, but also provided an insight into the submerged internodes. Investigated anatomical features were: radial thickness of the internode wall and that of each tissue constituting it (epidermis and subepidermal tissues, aerenchyma channels, cortical sclerenchyma and parenchyma); areas of aerenchyma channels and the summed transversal area of them; areas of the innermost vascular bundles involving the bundle sheath sclerenchyma, phloem and metaxylem vessels; the cross-sectional area of the pith cavity and that of the internode wall. After a 2–3% decrease below the uppermost internode, the thickness of internode tissues, except for cortical sclerenchyma, continuously increased downwards. Quantitative differences between the ramets grown at different water depths were observed only from the lower aerial internodes. Parenchyma taking part considerably in the mechanical stability of culms with its large extension and thick cell walls was more-layered and thicker (with the maximum thicknesses of approximately 1200 and 1000 μm) in ramets from 180–200 than from 20–30 cm water depth. Areas of the innermost vascular bundles increased downwards and decreased after a maximum value appearing in lower internodes of ramets grown in deeper than shallower water. Aerenchyma channels appeared farther up from the water surface in culms in shallower than deeper water: the top ends were found about 50 cm higher in culms from 20–30 than from 180–200 cm water depth. Along the transect at right angles to the shore, the radial thickness and area of aerenchyma channels were higher in ramets grown in medium water depth—the summed transversal area of them was greater than 4 mm2 in internodes at the water surface, while plants from the two ends of the water depth gradient had smaller aerenchyma channels (with approximately 1 mm2 total areas). In contrast, pith cavity area at the water surface continuously increased – up to 60 mm2 – from shallower to deeper water. Therefore, oxygen transport in ramets grown at the open water fringe of stands may occur mostly in the pith cavity.  相似文献   

14.
BACKGROUNDS AND AIMS: Echinacea angustifolia is a widespread species distributed throughout the Great Plains region of North America. Genetic differentiation among populations was investigated along a 1500 km north-south climatic gradient in North America, a region with no major geographical barriers. The objective of the study was to determine if genetic differentiation of populations could be explained by an isolation-by-distance model or by associations with climatic parameters known to affect plant growth and survival. METHODS: Historical climatic data were used to define the nature of the climatic gradient and AFLP markers were used to establish patterns of population genetic differentiation among ten Echinacea populations collected from North Dakota to Oklahoma. A total of 1290 fragments were scored using six EcoRI/MseI and three PstI/MseI primer combinations. Assessment of the correlation between climatic, genetic and geographic distances was assessed by Mantel and partial Mantel tests. KEY RESULTS: PstI/MseI combinations produced significantly fewer fragments, but a larger percentage was unique compared with EcoRI/MseI markers. Using estimates of F(ST), populations in Oklahoma and southern Kansas were identified as the most divergent from the other populations. Both the neighbour-joining tree and principal co-ordinate analysis clustered the populations in a north-south spatial orientation. About 60% of the genetic variation was found within populations, 20% among populations and the remaining 20% was partitioned among groups that were defined by the topology of the neighbour-joining tree. Significant support was found for the isolation-by-distance model independent of the effects of annual mean precipitation, but not from annual mean temperature and freeze-free days. CONCLUSIONS: Echinacea angustifolia populations exhibit genetic divergence along a north-south climatic gradient. The data support an isolation-by-distance restriction in gene flow that is independent of annual mean precipitation.  相似文献   

15.
Background and AimsThe persistence of a plant population under a specific local climatic regime requires phenotypic adaptation with underlying particular combinations of alleles at adaptive loci. The level of allele diversity at adaptive loci within a natural plant population conditions its potential to evolve, notably towards adaptation to a change in climate. Investigating the environmental factors that contribute to the maintenance of adaptive diversity in populations is thus worthwhile. Within-population allele diversity at adaptive loci can be partly driven by the mean climate at the population site but also by its temporal variability.MethodsThe effects of climate temporal mean and variability on within-population allele diversity at putatively adaptive quantitative trait loci (QTLs) were evaluated using 385 natural populations of Lolium perenne (perennial ryegrass) collected right across Europe. For seven adaptive traits related to reproductive phenology and vegetative potential growth seasonality, the average within-population allele diversity at major QTLs (HeA) was computed.Key ResultsSignificant relationships were found between HeA of these traits and the temporal mean and variability of the local climate. These relationships were consistent with functional ecology theory.ConclusionsResults indicated that temporal variability of local climate has likely led to fluctuating directional selection, which has contributed to the maintenance of allele diversity at adaptive loci and thus potential for further adaptation.  相似文献   

16.
鼎湖山马尾松径向生长动态与气候因子的关系   总被引:8,自引:2,他引:8  
Dendroclimatology method was used to study the relationship between ring index of Pinus massoniana and three climate factors in Dinghushan,South China.The ring indices were negatively correlated with the average tem-perature in June,August and September,and positively correlated with the average temperature of March,whereas no statistically significant correlation was found with monthly precipitation,showing that high summer temperature could limit the radial growth of the species,Meanwhile,tree ring indices showed a strong positive correlation with the relative humidity of April June,August,September,October and November,and also with the average humidity of the whole year,indicating that atmospheric moisture could not fully satisfy the growth of Pinus massoniana despite of abundant rainfall,The possible impact of climate change on the growth of Pinus massoniana was discussed accordingly.  相似文献   

17.
Josh Van Buskirk 《Oikos》2011,120(6):906-914
The distributions of many freshwater organisms correlate with a gradient in canopy cover, ranging from sunny wetlands to closed woodland ponds. Little is known about mechanisms that exclude species from some sections of the gradient while allowing persistence in others. I addressed this question by manipulating shading in 740‐l outdoor mesocosms and measuring several ecologically‐relevant traits in three species of amphibian larva (Rana temporaria and Triturus alpestris, generalists occupying the entire gradient; and Hyla arborea, a specialist in open habitats). Shading caused delayed development, but had no effect on survival and increased the growth rate of R. temporaria. Body and tail color were darker in the shade. Plasticity in morphological shape, consisting of reduced gut width and increased tail size under shaded conditions, may reflect poor food availability and low dissolved oxygen. The canopy generalist R. temporaria increased activity in the shade, spent more time basking in shallow water, and maintained high larval performance. Unexpectedly, the specialist H. arborea was also highly plastic. These results describe extensive phenotypic plasticity induced by shade, and highlight traits that may influence performance along the canopy gradient.  相似文献   

18.
利用中国大陆1km分辨率的月NDVI数据和相应的400个国家标准气象站点的月降水、月均温数据,依据中国气象局提出的气候分区,探讨了不同气候区NDVI与气候因子之间的时、空变化格局.结果表明,各月份降水与NDVI相关性均显著相关;起伏型时间序列模型能很好地拟合相关性的时间序列的动态变化,NDVI与降水的相关性拟合结果好于与温度相关性的拟合结果,全国范围内,与降水相关性拟合的R2为0.91,与温度相关性拟合的R2为0.86.  相似文献   

19.
20.
Abstract. This study deals with the floristic composition of lowland tropical forest in the watershed of the Panama Canal. The floristic composition of large trees in 54 forest plots was analysed with respect to environmental factors, including precipitation, geologic parent material, stand age, topography, and soils. The plots contain 824 species of trees with a diameter at breast height ≥10 cm and represent a regional flora with exceptional β‐diversity. Plot data indicate that the Panamanian forest is strongly spatially structured at the landscape scale with floristic similarity decreasing rapidly as a function of inter‐plot geographic distance, especially for distances <5 km. The ordinations and patterns of endemism across the study area indicate broad floristic associations well correlated with Holdridge life zones. The results indicate the positive aspects of life zone classification at regional scales, while simultaneously highlighting its inadequacy for finer scales of analysis and resource management. Multivariate gradient analysis techniques (Non‐metric Multidimensional Distance Scaling and Detrended Correspondence Analysis) show clear patterns of floristic variability correlated with regional precipitation trends, surficial geology, and local soil attributes. Geologic and edaphic conditions, such as acidic soils or excessively drained limestone substrates, appear to override the effects of precipitation and modify forest composition. We conclude that the Panamanian forest shows clear patterns of spatial organization along environmental gradients, predominantly precipitation. The rapid decline in floristic similarity with distance between stands also suggests a role for dispersal limitation and stochastic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号