首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Little is known about the influence of forest management on the interaction between seed bank and aboveground vegetation. We surveyed seed banks and vegetation in 10 forest stands under similar abiotic conditions but submitted either to a coppice-with-standards treatment (n=5) or to a selective-cutting system (n=5). We analyzed species composition and diversity, community ecological profile, and distribution of taxa among different life forms, strategy, morphology and functional type categories. A total of 2085 seedlings (8296 seedsm–2) germinated-corresponding to 28 species, among which Juncus effusus was the most abundant. Fifty-seven percent of the species were also recorded in the aboveground vegetation, the dominant species being Rubus fruticosus agg., but only 28% of the aboveground species were present in the seed bank. Our results suggest that (1) vernal geophytes and shade-tolerant perennials, which group most true forest species, are not incorporated in the seed bank, (2) parent plants of most seeds were present either in the stand in an earlier dynamic stage or apart from the stand and long-distance dispersed, (3) as expected, early-successional species are well represented in the seed bank, (4) forestry vehicles seem to be a major means of dispersion for stress-tolerant species normally found in forest lanes and wheel tracks. We conclude that seed banks contain species that have a potentially negative impact on the true forest flora and, thus, forest management should minimize soil disturbance and retain remnants of old-coppice woods to conserve disturbance-sensitive true forest species.  相似文献   

2.
3.
Abstract. Winter and summer annuals in the Chihuahuan Desert have been intensively studied in recent years but little is known about the similarities and differences in the dynamics between these two communities. Using 15 yr of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially co‐existent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 yr of observation was higher than winter annuals, the mean number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The rank abundances of species in winter were significantly positively correlated for a period of up to 7 yr while in summer significant positive correlations in rank abundance disappeared after 2 to 3 yr. The higher seasonal species diversity (i.e. number of species observed in each season) in winter rather than the overall special pool (over 15 yr) may be responsible for the greater community stability of winter annuals. The difference in long‐term community dynamics between the two communities of annual plants are likely due to the differences in total species pool, life history traits (e.g. seed size), and seasonal climatic regimes.  相似文献   

4.
5.
6.
7.
Question: What are the age structure and growth trends in a 160‐year old not‐managed Pinus sylvestris plantation with spontaneous development of Quercus robur and can recruitment of Q. robur be related to the radial growth pattern of the P. sylvestris overstorey? Location: Mattemburgh forest reserve, The Netherlands. Methods: Throughout the forest, we sampled 103 oaks and 102 pines with an increment corer. Tree ring widths were measured and cross‐dated to produce mean ring width series. With these data we determined tree ages, investigated growth trends and identified growth releases and suppressions. Results: Q. robur is uneven‐aged: some individuals recruited around 1925, but most reached coring height in the 1940s. The latter recruitment period related to a transition from stressed to released growth of the overstorey pines, growth releases of the oldest Q. robur and occurrence of P. sylvestris regeneration. No further recruitment has taken place since 1950. Conclusions: This study demonstrates that an old pine plantation can develop spontaneously into well‐structured pine forest with an understorey of oak and pine. However, understorey recruitment in these forest types is not a continuous process and in this case a single allogenic canopy disturbance triggered its establishment.  相似文献   

8.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

9.
Because of their isolation and geographical position, and in contrast to the multi‐species tree canopies of tropical rain forests on the continents, the Hawaiian Islands have only two native dominant canopy species in their rain forests, Acacia koa and Metrosideros polymorpha. The wetter forest ecosystems are dominated by only the latter. In 1905, a dieback of lowland tropical Metrosideros rain forest was observed over a 35 km stretch on the lower east slope of Haleakala Mountain on Maui Island. This was dubbed ‘The Maui Forest Trouble.’ Although the synchronous decline of so many trees was initially believed to be caused by an epidemic disease, a decade of research yielded no pathogen. The conclusion was that the Hawaiian flora consisted primarily of colonizer species that were unable to continue growing on aging soils. Although this made ecological sense at that time, it was a rather limited and thereby unfortunate conclusion. Further research has shown that the Maui Forest Trouble was a ‘bog‐formation dieback’, a process of vegetation dynamics not only related to soil aging but more broadly to geomorphic aging and fundamental landscape change. This process is clearly a marginal‐site syndrome, but a natural process of profound consequence for biological conservation. This will be further explained as a paradigm for vegetation ecology.  相似文献   

10.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

11.
Abstract. Question: Does the seed bank filter annual plant composition and determine cover at the species level? Location: 510 m a.s.l., central Spain. Methods: Seven transects and 136 quadrats were established in a semi‐arid gypsum system. Seed bank samples were collected in each quadrat in September. The community was sampled the following April. For each quadrat we measured slope, microslope, landform, elevation, perennial cover and crust cover. Seed bank was estimated using the direct emergence method in glasshouse. Relationship among seed bank and annual community was assessed by Mantel correlations. Above‐ground cover for the five most abundant species was modelled with GLMs. Results: Seed bank density was the best predictor for annual community cover; perennial cover and landform were also included in the model. Species composition between September seed bank and April annual community cover was also highly related according to the Mantel test. This relationship was constant, even when the effect due to other abiotic (landform, microslope) or biotic (perennial cover, crust cover) parameters were partialled out. Microslope, elevation and seed bank density were the best parameters to predict spring cover of the five most abundant species. Conclusions: Above‐ground and below‐ground community compartments are strongly related in terms of abundance and species composition. This relationship is filtered by several environmental factors (e.g. perennial cover, landform, microslope) that exert a strong control at community and individual levels. Our results support the hypothesis that annual community performance is affected by seed bank pattern.  相似文献   

12.
13.
Forest vegetation and soils have been suggested as potentially important sinks for carbon (C) with appropriate management and thus are implicated as effective tools in stabilizing climate even with increasing anthropogenic release of CO2. Drought, however, which is often predicted to increase in models of future climate change, may limit net primary productio (NPP) of dry forest types, with unknown effects on soil C storage. We studied C dynamics of a deciduous temperate forest of Hungary that has been subject to significant decreases in precipitation and increases in temperature in recent decades. We resampled plots that were established in 1972 and repeated the full C inventory by analyzing more than 4 decades of data on the number of living trees, biomass of trees and shrubs, and soil C content. Our analyses show that the decline in number and biomass of oaks started around the end of the 1970s with a 71% reduction in the number of sessile oak stems by 2014. Projected growth in this forest, based on the yield table's data for Hungary, was 4.6 kg C/m2. Although new species emerged, this new growth and small increases in oak biomass resulted in only 1.9 kg C/m2 increase over 41 years. The death of oaks increased inputs of coarse woody debris to the surface of the soil, much of which is still identifiable, and caused an increase of 15.5%, or 2.6 kg C/m2, in the top 1 m of soil. Stability of this fresh organic matter input to surface soil is unknown, but is likely to be low based on the results of a colocated woody litter decomposition study. The effects of a warmer and drier climate on the C balance of forests in this region will be felt for decades to come as woody litter inputs decay, and forest growth remains impeded.  相似文献   

14.
Aim Lowland woodlands in Europe went through dramatic changes in management in the past century. This article investigates the influence of two key factors, abandonment of coppicing and increased pressure of ungulates, in thermophilous oakwoods. We focused on three interconnected topics: (1) Has the assumed successional trend lead to impoverishment of the vegetation assemblages? (2) Has it resulted in vegetation homogenization? (3) Are the thermophilous oakwoods loosing their original character? Location Czech Republic, Central Europe. Methods The vegetation in 46 semi‐permanent plots was recorded three times: firstly, shortly after the abandonment of coppicing (1953) and then, after four to six decades of secondary succession and strong game impact (1992 and 2006). Overall trends and changes in species spectra were analysed. Results There is a marked successional shift towards species‐poorer communities growing in cooler, moister and nutrient‐richer conditions. The change was significantly different in parts affected and unaffected by high numbers of ungulates yet only for herbs, not the woody species. However, observed change in species composition was not accompanied by significant homogenization process that is the general process reported from elsewhere. A sharp decline in plant species typical for thermophilous woodland communities and in endangered species indicates that the original character of the woodland has been gradually lost. Main conclusions Thermophilous oakwoods have been largely replaced by mesic forests. Lowland oakwoods in continental parts of Europe historically depended on active management, which kept the understorey conditions light and warm. Successional processes in the 20th century caused a critical loss of species diversity at various spatial levels. However, artificially high numbers of ungulates, which otherwise have a negative impact, probably held up succession, so that the changes may still be reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号