首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The dispersal ability of plants is a major factor driving ecological responses to global change. In wind‐dispersed plant species, non‐random seed release in relation to wind speeds has been identified as a major determinant of dispersal distances. However, little information is available about the costs and benefits of non‐random abscission and the consequences of timing for dispersal distances. We asked: 1) to what extent is non‐random abscission able to promote long‐distance dispersal and what is the effect of potentially increased pre‐dispersal risk costs? 2) Which meteorological factors and respective timescales are important for maximizing dispersal? These questions were addressed by combining a mechanistic modelling approach and field data collection for herbaceous wind‐dispersed species. Model optimization with a dynamic dispersal approach using measured hourly wind speed showed that plants can increase long‐distance dispersal by developing a hard wind speed threshold below which no seeds are released. At the same time, increased risk costs limit the possibilities for dispersal distance gain and reduce the optimum level of the wind speed threshold, in our case (under representative Dutch meteorological conditions) to a threshold of 5–6 m s–1. The frequency and predictability (auto‐correlation in time) of pre‐dispersal seed‐loss had a major impact on optimal non‐random abscission functions and resulting dispersal distances. We observed a similar, but more gradual, bias towards higher wind speeds in six out of seven wind‐dispersed species under natural conditions. This confirmed that non‐random abscission exists in many species and that, under local Dutch meteorological conditions, abscission was biased towards winds exceeding 5–6 m s–1. We conclude that timing of seed release can vastly enhance dispersal distances in wind‐dispersed species, but increased risk costs may greatly limit the benefits of selecting wind conditions for long‐distance dispersal, leading to moderate seed abscission thresholds, depending on local meteorological conditions and disturbances.  相似文献   

2.
Natural genetic variants at the phosphoglucose isomerase, PGI, gene differ in spatial patterning of their polymorphism among species complexes of Colias butterflies in North America. In both lowland and alpine complexes, molecular-functional properties of the polymorphic genotypes can be used to predict genotype-specific adult flight performances and resulting large genotypic differences in adult fitness components. In the lowland species complex, there is striking uniformity of PGI polymorph frequencies at a number of sites across the American West; this fits with earlier findings of strong, similar differences in fitness components over this range. In an alpine complex, Colias meadii shows similar uniformity of PGI frequencies within habitat types, either montane steppe or alpine tundra, over several hundred kilometres in the absence of dispersal. At the same time, large shifts (10-20%) in frequency of the most common alleles occur between steppe and tundra populations, whether these are isolated or, as in some cases, are in contact and exchange many dispersing adults each generation. Data on male mating success of common C. meadii PGI genotypes in steppe and tundra show heterozygote advantage in both habitat types, with shifts in relative homozygote disadvantage between habitats which are consistent with observed frequency differences. Nonadaptive explanations for this situation are rejected, and alternative, thermal-ecology-based adaptive hypotheses are proposed for later experimental test. These findings show that strong local selection may dominate dispersal as an evolutionary agent, whether or not dispersal is present, and that selection may often be the major force promoting 'cohesion' of species over long distances. This case offers new opportunities for integrating studies of molecular structure and function with ecological aspects of natural selection in the wild, both within and among species.  相似文献   

3.
1. Previous studies have identified lowland areas as barriers to gene flow (dispersal) between distinct mountain ranges in montane species of aquatic insects. In this study, we investigated the population genetic structure of two closely related Atalophlebia (mayfly) species inhabiting lowland areas of south‐east Queensland, Australia, with the expectation of widespread gene flow throughout the low‐altitude environment and associated homogeneous genetic structure. 2. In particular, we asked whether species with lower‐altitude distributions demonstrate greater spatial distribution of mtDNA (COI) alleles than the upland species studied previously. This pattern would be expected if good dispersal ability is associated with population persistence in these drought‐prone habitats. 3. The two species demonstrated contrasting genetic population structure. Atalophlebia sp. AV13 D revealed strong population structure, with populations on each side of the low‐altitude area isolated from each other for a long time (c.350 kya), and the presence of an isolation‐by‐distance pattern over relatively small geographical distances (<40 km). In contrast, Atalophlebia sp. AV13 A was panmictic at the scale investigated (≤160 km), with no history of past population fragmentation. 4. Examination of sample distribution along the altitudinal gradient reveals that Atalophlebia sp. AV13 D may have a more upland distribution (associated with greater habitat stability) than previously supposed, while Atalophlebia sp. AV13 A inhabits more xeric lowland areas, where freshwater habitats are less stable. We consequently hypothesise that these contrasting genetic population structures result from differences in habitat stability along the altitudinal gradient, only species with good dispersal ability being able to persist in unstable habitats. These findings may be applicable to other regions of the globe where habitat instability is associated with altitudinal gradients.  相似文献   

4.
Background: It is critical to understand the ecological factors shaping seed dispersal in plant communities in order to predict their fate in the face of global change. Communities restricted to patchy habitats may contain more species with ‘directed’ dispersal syndromes that facilitate successful seed dispersal to other patches; however, habitat quality may constrain the presence of and efficiency of dispersal syndromes found within those habitats.

Aims: The aim of this study was to hypothesise that if habitat patchiness is an important filter on dispersal syndromes, ‘directed’ vertebrate dispersal should be more prevalent in serpentine habitats because of their patchiness. Alternatively, if habitat quality is more important, wind dispersal should be more prevalent in serpentine habitats because of their low fertility.

Methods: Using three datasets representing grassland, chaparral and forest vegetation types, we analysed differences in the composition of dispersal syndromes (vertebrate, wind, passive, water and ant) between communities on patchy infertile serpentine soils and on continuous, fertile non-serpentine soils. Our analyses also accounted for correlated functional traits and phylogenetic relatedness.

Results: Across and within all three vegetation types, serpentine communities had significantly higher proportions of wind dispersed and lower proportions of vertebrate-dispersed species. These patterns were not independent of functional traits. Proportions of the other dispersal syndromes did not differ.

Conclusions: Our results suggest that on low-fertility soils, habitat quality may outweigh habitat patchiness as a filter on the availability of dispersal syndromes, potentially adding to the vulnerability of such communities to stochastic extinctions and global change.  相似文献   


5.
Abstract. We evaluate the potential influence of disturbance on the predictability of alpine plant species distribution from equilibrium‐based habitat distribution models. Firstly, abundance data of 71 plant species were correlated with a comprehensive set of environmental variables using ordinal regression models. Subsequently, the residual spatial autocorrelation (at distances of 40 to 320 m) in these models was explored. The additional amount of variance explained by spatial structuring was compared with a set of functional traits assumed to confer advantages in disturbed or undisturbed habitats. We found significant residual spatial autocorrelation in the habitat models of most of the species that were analysed. The amount of this autocorrelation was positively correlated with the dispersal capacity of the species, levelling off with increasing spatial scale. Both trends indicate that dispersal and colonization processes, whose frequency is enhanced by disturbance, influence the distribution of many alpine plant species. Since habitat distribution models commonly ignore such spatial processes they miss an important driver of local‐ to landscape‐scale plant distribution.  相似文献   

6.
Long‐distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long‐distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species’ dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed dispersal model to calculate dispersal kernels from dispersal traits. We used data on 190 plant species and calculated their regional survival in two ways, using species distribution data from 36,800 1 km2‐grid cells and 10,754 small plots covering the Netherlands during the largest part of the 20th century. We carried out correlation and stepwise multiple regression analyses to quantify the importance of long‐distance dispersal, expressed as the 99‐percentile dispersal distance of the dispersal kernels, relative to the importance of median‐distance dispersal and other plant traits that are likely to contribute to the explanation of regional survival: plant longevity (annual, biennial, perennial), seed longevity, and plant nutrient requirement. Results show that long‐distance dispersal plays a role in determining regional survival, and is more important than median‐distance dispersal and plant longevity. However, long‐distance dispersal by wind explains only 1–3% of the variation in regional survival between species and is equally important as seed longevity and much less important than nutrient requirement. In changing landscapes such as in the Netherlands, where large‐scale eutrophication and habitat destruction took place in the 20th century, plant traits indicating ability to grow under the changed, increasingly nutrient‐rich conditions turn out to be much more important for regional survival than seed dispersal.  相似文献   

7.

Background and Aims

Hygrochasy is a capsule-opening mechanism predominantly associated with plants in arid habitats, where it facilitates spatially and temporally restricted dispersal. Recently, hygrochastic capsules were described in detail for the first time in alpine Veronica in New Zealand. The aim of the present study was to investigate whether hygrochastic capsules are an adaptation of alpine Veronica to achieve directed dispersal to safe sites. We expect that by limiting dispersal to rainfall events, distances travelled by seeds are short and confine them to small habitat patches where both seedlings and adults have a greater chance of survival.

Methods

Dispersal distances of five hygrochastic Veronica were measured under laboratory and field conditions and the seed shadow was analysed. Habitat patch size of hygrochastic Veronica and related non-hygrochastic species were estimated and compared.

Key Results

Dispersal distances achieved by dispersal with raindrops did not exceed 1 m but weather conditions could influence the even distribution of seeds around the parent plant. Compared with related Veronica species, hygrochastic Veronica mostly grow in small, restricted habitat patches surrounded by distinctly different habitats. These habitat patches provide safe sites for seeds due to their microtopography and occurrence of adult cushion plants. Non-hygrochastic Veronica can be predominantly found in large habitats without clearly defined borders and can be spread over long distances along rivers.

Conclusions

The results suggest that hygrochasy is a very effective mechanism of restricting seed dispersal to rainfall events and ensuring short-distance dispersal within a small habitat patch. It appears that it is an adaptation for directed dispersal to safe sites that only exist within the parent habitat.  相似文献   

8.
Habitat loss can alter animal movements and disrupt animal seed dispersal mutualisms; however, its effects on spatial patterns of seed dispersal are not well understood. To explore the effects of habitat loss on seed dispersal distances and seed dispersion (aggregation), we created a spatially explicit, individual‐based model of an animal dispersing seeds (SEADS—Spatially Explicit Animal Dispersal of Seeds) in a theoretical landscape of 0%–90% habitat loss based on three animal traits: movement distance, gut retention time, and time between movements. Our model design had three objectives: to determine the effects of (1) animal traits and (2) habitat loss on seed dispersal distances and dispersion and (3) determine how animal traits could mitigate the negative effects of habitat loss on these variables. SEADS results revealed a complex interaction involving all animal traits and habitat loss on dispersal distances and dispersion, driven by a novel underlying mechanism of fragment entrapment. Unexpectedly, intermediate habitat loss could increase dispersal distances and dispersion relative to low and high habitat loss for some combinations of animal traits. At intermediate habitat loss, movement between patches was common, and increased dispersal distances and dispersion compared to continuous habitats because animals did not stop in spaces between fragments. However, movement between patches was reduced at higher habitat loss as animals became trapped in fragments, often near the parent plant, and dispersed seeds in aggregated patterns. As movement distance increased, low time between movements and high gut retention time combinations permitted more movement to adjacent patches than other combinations of animal traits. Because habitat loss affects movement in a nonlinear fashion under some conditions, future empirical tests would benefit from comparisons across landscapes with more than two levels of fragmentation.  相似文献   

9.
S.J. McCauley 《水生昆虫》2013,35(3-4):195-204
Morphology is an important determinant of flight performance and can shape species’ dispersal behaviour. This study contrasted the morphology of flight-related structures in dragonfly species with different dispersal behaviours to gain insights into the relationship between morphology and dispersal behaviour. Specifically, wing size, wing shape and thorax size were compared in three co-occurring species from different clades within the genus Libellula (Odonata: Anisoptera: Libellulidae) to assess how these morphological traits are related to differences in dispersal behaviour and to how broadly their larvae occur across a habitat gradient. Two species had broad larval habitat distributions as well as high rates and distances of dispersal. These two species had relatively larger wings and thoraces than the third species, which was found only in permanent lakes and had limited dispersal. The hind-wings of more dispersive species also had lower aspect ratios and a relatively wider basal portion of the wing than the less dispersive species. Broad hind-wings may facilitate the use of gliding flight and reduce the energetic costs of dispersal. Determining the morphological traits associated with alternative dispersal behaviours may be a useful tool to assess the differential dispersal capacities of species or populations.  相似文献   

10.
Animal dispersal depends on multiple factors, such as habitat features and life‐history traits of the species. We studied the propensity for ballooning dispersal in spiders under standardized laboratory conditions. The 1269 tested individuals belonged to 124 species and originated from 16 sites with wide variation in habitat type. Spiders from disturbed habitats ballooned 5.5 times more than spiders from stable habitats. In Meioneta rurestris , for which we had enough data for a single‐species analysis, individuals were most dispersive if they originated from highly disturbed habitats. While the data for the other species were not sufficient for single‐species analyses, a hierarchical model that included the data simultaneously on all species suggested that dispersal propensity generally increases within species with the level of habitat disturbance. Dispersal probability showed a trend to increase with niche width, but the higher commonness of species with wide niches provides an alternative explanation for this pattern. As the prevalence of especially dispersive species was highest in disturbed habitats, variation in dispersal propensity was influenced by both inter‐ and intraspecific factors. We conclude that the positive correlation between niche width and dispersal propensity enables generalist species to utilize highly disturbed habitats, whereas the persistence of specialist species with restricted dispersal ability requires the conservation of stable habitats.  相似文献   

11.
Species may survive under contemporary climate change by either shifting their range or adapting locally to the warmer conditions. Theoretical and empirical studies recently underlined that dispersal, the central mechanism behind these responses, may depend on the match between an individuals’ phenotype and local environment. Such matching habitat choice is expected to induce an adaptive gene flow, but it now remains to be studied whether this local process could promote species’ responses to climate change. Here, we investigate this by developing an individual‐based model including either random dispersal or temperature‐dependent matching habitat choice. We monitored population composition and distribution through space and time under climate change. Relative to random dispersal, matching habitat choice induced an adaptive gene flow that lessened spatial range loss during climate warming by improving populations’ viability within the range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats at the cold margin. The model even predicted range contraction under random dispersal but range expansion under optimal matching habitat choice. These benefits of matching habitat choice for population persistence mostly resulted from adaptive immigration decision and were greater for populations with larger dispersal distance and higher emigration probability. We also found that environmental stochasticity resulted in suboptimal matching habitat choice, decreasing the benefits of this dispersal mode under climate change. However population persistence was still better under suboptimal matching habitat choice than under random dispersal. Our results highlight the urgent need to implement more realistic mechanisms of dispersal such as matching habitat choice into models predicting the impacts of ongoing climate change on biodiversity.  相似文献   

12.
Aim   We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.
Location   Europe.
Methods   We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea . Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.
Results   Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.
Main conclusions   The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.  相似文献   

13.
The survival and success of alien plant species is determined by species traits (i.e., invasiveness) and the characteristics of the habitats in the region of introduction (i.e., invasibility). However, little is known about species traits as related to habitat characteristics. We assessed the characteristics of successful invaders and the interaction of environmental factors and life-history traits for alien plant species. The vascular plants were recorded from 52 agricultural landscapes in Finland. We compared the traits of native and alien plant species with Fisher’s exact test and used a three table ordination analysis, RLQ analysis, to relate species traits to environmental conditions. Species were clustered according to their position on the RLQ axes, and the clusters were tested for phylogenetic independence. The successful alien plant species were associated with life form and preferences for moisture and nitrogen, but the trait composition varied according to the habitat type. Two RLQ axes explained 80.5% of the variation, and the species traits were significantly associated with environmental variables. The clustering showed that the occurrence of alien plant species in agricultural habitats was driven by invasion history, traits related to dispersal (dispersal type, seed mass) and habitat preferences, as well as environmental features, such as geographical location, temperature and the quality and disturbance regime of the habitats. All clusters were phylogenetically non-independent. Thus, the clusters of alien species comprised species of diverse taxonomic affinities, although, they shared the traits explaining their occurrence in particular habitats. This information is useful for understanding the link between species traits and the environmental conditions of the habitats, and complexity of the invasion process.  相似文献   

14.
This study investigates the nitrogen economy of six altitudinally contrasting Poa species which differ in their relative growth rate (R). Two alpine (Poa fawcettiae and P. costiniana), one sub-alpine (P. alpina)and three temperate lowland species (P. pratensis, P. campressa and P. trivialis) were grown hydroponically under identical conditions in a growth room. The low R exhibited by the alpine species was associated with lower plant organic nitrogen concentration (np) and lower nitrogen productivity (Πp, amount of biomass accumulation per mol organic nitrogen and time). The differences in Πp between the alpine and lowland species did not appear to be due to differences in the carbon concentration or the proportion of total plant organic nitrogen allocated to the leaves, stems or roots. Variations in ΠP were also not due to variations in photosynthetic nitrogen use efficiency (ΨN, the rate of photosynthesis per unit organic leaf nitrogen) or shoot or root respiration rates per unit organic nitrogen (ΛSH and ΛR, respectively) per se. Rather, the lower Λp in the alpine species was probably due to a combination of small variations in several of the parameters (e.g. slightly lower ΨN, slightly higher ΛSH and ΛR, and slightly higher proportions of total plant organic nitrogen allocated to the roots). The alpine species exhibited lower organic acid and mineral concentrations. However, no differences in whole-plant construction costs (grams of glucose needed to synthesize one gram of biomass) were observed between She alpine and lowland Poa species. The lack of sub-stantial differences in ΨN between the alpine and lowland species contrasts with the large differences in ΨN between slow- and fast-growing lowland species that have been reported in the literature. The reasons for the unusually high ΨN values exhibited by the alpine Poa species are discussed.  相似文献   

15.
16.
The genus Prodontria (Scarabaeidae: Melolonthinae), which comprises 16 described species, is an endemic southern New Zealand genus occupying lowland and coastal habitats, inter-montane basins and alpine environments. Many of the species have a limited distribution and face potential threats from habitat change and predation. The only species to be formally protected is P. lewisii Broun, commonly known as the Cromwell Chafer, which is now restricted to a 81-ha reserve in Central Otago. One undescribed lowland species might be extinct as a result of habitat modification. The current status of Prodontria species, the known distribution of species and potential threats are discussed. An erratum to this article can be found at  相似文献   

17.
Jan Douda 《植被学杂志》2010,21(6):1110-1124
Questions: What is the relative importance of landscape variables compared to habitat quality variables in determining species composition in floodplain forests across different physiographic areas? How do species composition and species traits relate to effects of particular landscape variables? Do lowland and mountain areas differ in effects of landscape variables on species composition? Location: Southern Czech Republic. Methods: A total of 240 vegetation relevés of floodplain forests with measured site conditions were recorded across six physiographic areas. I tested how physiographic area, habitat quality variables and landscape variables such as current land‐cover categories, forest continuity, forest size and urbanization influenced plant species composition. I also compared how mountain and lowland areas differ in terms of the relative importance of these variables. To determine how landscape configuration affects the distribution of species traits, relationships of traits and species affinity with landscape variables were tested. Results: Among landscape variables, forest continuity, landscape forest cover and distance to nearest settlement altered the vegetation. These variables also influenced the distributions of species traits, i.e. life forms, life strategies, affinity to forest, dispersal modes, seed characteristics, flooding tolerance and Ellenberg indicator values for nitrogen, light, moisture and soil reaction. Nevertheless, physiographic area and habitat quality variables explained more variation in species composition. Landscape variables were more important in lowland areas. Forest continuity affected species composition only in lowlands. Conclusions: Although habitat quality and physiographic area explained more vegetation variability, landscape configuration was also a key factor influencing species composition and distribution of species traits. However, the results are dependent on forest geographical location, with lowland forests being more influenced by landscape variables compared to mountain forests.  相似文献   

18.
Aim To test for correlations between plant traits and geographic range size. Location: New Zealand. Methods Trait data were derived from comparative experiments, in which plants were grown in pots or in a common garden, that tested for intrinsic differences among the species in traits relating to growth, reproduction and dispersal. Controlled experiments were used to test for differences in responses to drought and waterlogging stress. Geographic range size was measured as the number of 10 km grid squares in the New Zealand region containing at least one occurrence of the species. Results Growth rate, dispersal capacity and environmental tolerance were all positively related to geographic range size. Geographically restricted species tended to have more variable flowering between years. Flowering intensity, reproductive allocation, seed set, diaspore size, and responses to single environmental factors were not related to geographic range size. Main conclusions The differences between range‐restricted and widespread Chionochloa species appear to represent alternative strategies of coping with environmental change in a dynamic landscape. Range‐restricted species are specialized to temporally persistent habitats that are of limited geographic extent. As a consequence, they have evolved traits that conflict with persistence in widespread habitats. The implication for conservation management is that the conservation of rare plants will frequently depend on protection of their habitats. The widespread Chionochloa species possess traits that enable them to disperse to and occupy a greater range of habitats. These traits have allowed some of these species to expand their ranges following environmental changes that favoured an increase in grassland extent.  相似文献   

19.
Questions: 1. Which plant traits and habitat characteristics best explain local above‐ground persistence of vascular plant species and 2. Is there a trade‐off between local above‐ground persistence and the ability for seed dispersal and below‐ground persistence in the soil seed bank? Locations: 845 long‐term permanent plots in terrestrial habitats across the Netherlands. Methods: We analysed the local above‐ground persistence of vascular plants in permanent plots (monitored once a year for ca. 16 year) with respect to functional traits and habitat preferences using survival statistics (Kaplan‐Meier analysis and Cox’ regression). These methods account for censored data and are rarely used in vegetation ecology. Results: Local above‐ground persistence is determined by both functional traits (especially the ability to form long‐lived clonal connections) and habitat preferences (especially nutrient requirements). Above‐ground persistence is negatively related to the ability for dispersal by wind and to the ability to accumulate a long‐term persistent soil seed bank (‘dispersal through time’) and is positively related to the ability for dispersal by water. Conclusions: Most species have a half‐life expectation over 15 years, which may contribute to time lags after changes in habitat quality or ‐configuration (‘extinction debt’). There is evidence for a trade‐off relationship between local above‐ground persistence and below‐ground seed persistence, while the relationship with dispersal in space is vector specific. The rate of species turnover increases with productivity.  相似文献   

20.
Habitat fragmentation, the conversion of landscapes into patchy habitats separated by unsuitable environments, is expected to reduce dispersal among patches. However, its effects on dispersal should depend on dispersal syndromes, i.e. how dispersal covaries with phenotypic traits, because these syndromes can drastically alter dispersal and subsequent ecological and evolutionary dynamics. Our comprehension of whether environmental factors such as habitat fragmentation generate and/or modify dispersal syndromes (i.e. conditional dispersal syndromes) is therefore key for biodiversity forecasting. Here we tested whether habitat fragmentation modulates dispersal syndromes by experimentally manipulating matrix harshness, a critical feature of habitat fragmentation, in ciliate microcosms. We found evidence for dispersal syndromes involving multiple traits linked to morphology (elongation and size), movement (velocity and linearity) and demography (growth rate and maximal population density). More importantly, these syndromes were modified by matrix harshness, with increased differences between residents and dispersers in morphology and movement traits, and decreased differences in growth rate as the matrix became increasingly harsh. Our findings thus reveal that habitat fragmentation can mediate the intensity and form of dispersal syndromes, a context-dependence that could have important consequences for ecological and evolutionary dynamics under environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号