首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

2.
Question: How well can mortality probabilities of deciduous trees(Fagus sylvatica) and conifers (Abies alba) be predicted using permanent plot data that describe growth patterns, tree species, tree size and site conditions? Location: Fagus forests in the montane belt of the Jura folds (Switzerland). Method: Permanent plot data were used to develop and validate logistic regression models predicting survival probabilities of individual trees. Backward model selection led to a reduced model containing the growth‐related variable ‘relative basal area increment’ (growth‐dependent mortality) and variables not directly reflecting growth such as species, size and site (growth‐independent mortality). Results: The growth‐mortality relationship was the same for both species (growth‐dependent mortality). However, species, site and tree size also influenced mortality probabilities (growth‐independent mortality). The predicted survival probabilities of the final model were well calibrated, and the model showed an excellent discriminatory power (area under the receiver operating characteristic curve = 0.896). Conclusion: Mortality probabilities of Fagus sylvatica and Abies alba can be predicted with high discriminatory power using a well calibrated logistic regression model. Extending this case study to a larger number of tree species and sites could provide species‐ and site‐specific tree mortality models that allow for more realistic projections of forest succession.  相似文献   

3.
Aim The dominant forces behind the expansion of Fagus sylvatica (beech) in northern Europe during the late Holocene have been much debated. Palaeoecological analyses were performed for a biodiversity hotspot reserve in order to study the processes behind the local establishment of Fagus, as well as the historical vegetational development in relation to present‐day biodiversity and conservation. Location Biskopstorp Forest Reserve in south‐west Sweden. Methods Pollen and charcoal were analysed from three small‐hollow sites in the reserve. Two of the investigated wetlands were located adjacent to old‐growth stands of Fagus, and the third was located near a stand of old Quercus. Results The 2500‐year record shows that Fagus was first established around the two Fagus old‐growth sites, c. ad 900 and 1200, respectively, and that this was followed by an expansion around ad 1600. During the establishment phase, and more so in the expansion phase, there were simultaneous increases in types of pollen indicative of human activity. These indicators are also frequent throughout the record from the Quercus site, but here Fagus never became common. Main conclusions The dynamics behind the establishment and expansion of Fagus in the reserve seems to have been influenced to a large degree by human activity, for example selective cutting, human‐induced fires, and agriculture. Fagus became established in the reserve more than 1000 years after it became established regionally, making climate less probable as the dominant force behind the species’ stand‐scale establishment. The spreading of Fagus across southern Scandinavia has previously been shown to be a patchy process in time and space. Our study suggests that this patchiness is evident also at a small spatial scale (a few kilometres). At the Quercus site, relatively high amounts of pollen from the field layer throughout the record indicate open conditions that probably favoured Quercus. The degree of human impact at this site was probably too high to allow the expansion of Fagus. With the long‐term perspective provided by our study it was possible to identify the last 200–300 years as an unrepresentative period with respect to tree species composition and forest dynamics. The large increase of Picea locally and regionally over the last several hundred years, combined with dramatic levels of human impact, have altered the tree composition and forest dynamics to such an extent that active management is necessary in order to maintain biodiversity in the reserve.  相似文献   

4.
Questions: What is the effect of the 19th century (pre‐industrialization) landscape pattern on the recovery of climax forests in cool‐temperate mountain areas dominated by Fagus crenata (Japanese beech)? Location: Secondary forests on Mt. Daisen, western Japan. Methods: Vegetation patterns before and after industrialization were obtained from maps drawn in 1898 and 1979. Tree measurements were made in 12 plots in 1997. Correlation between current Fagus crenata dominance and forest edge in the 19th century was analysed using an S‐shaped regression curve. Fagus juvenile density was counted in the plots, and distances from each plot to the five nearest mother trees were measured to determine the dispersal kernel. Results: Secondary grassland covered a substantial area in 1898, whereas forest covered most of the area in 1997. Fagus was dominant in places in the interior forest 100 years ago, and mature Fagus trees were absent in secondary forests that had been grasslands in 1898. The expected number of juveniles decreased to one individual per 100 m2 at 43.5 m from the mother tree. Conclusions: The pre‐industrialization landscape greatly affected recovery of Fagus forest. Forests found on the 1898 vegetation map might have acted as refugia for Fagus. The limited dispersal ability of Fagus suggests that it would take many generations (several hundred years) for Fagus forests to recover at the centre of what had been grasslands in the 19th century.  相似文献   

5.
Question: What are the main pathways of long‐term stand development in forest ecosystems on oligotrophic and acidic sandy soils? Location: Nine forest reserves at different locations in The Netherlands; all ageing Pinus sylvestris forests that are no longer managed and where massive regeneration of broad‐leaved species is often reported. Methods: Agglomerative cluster analysis was used to define structural classes from forest reserve data. Sequences of structural classes, representing different trajectories of stand development, were constructed with the aid of a process based gap model. Results: Four main pathways of stand development could be distinguished. Three pathways are linked to gap dynamics, and lead towards dominance of Betula, Quercus or Fagus. They differ in light availability for regeneration and/or seed tree availability. The fourth pathway comprises of development patterns after major disturbances. Conclusions: The new methodological approach, combining the empirical strength of forest reserve data with the predictive ability of a process based model, made it possible to detail and quantify insights into structure and dynamics of forests on poor sandy soils. Some factors not included in the study can substantially influence pathways, especially those where Quercus and Fagus potentially play an important role.  相似文献   

6.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

7.
Basic knowledge of the previous forest types or ecosystem present in an area ought to be an essential part of all landscape restoration. Here, we present a detailed study of forest and land use history over the past 2,000 years, from a large estate in southernmost Sweden, which is currently undergoing a restoration program. In particular, the aim was to identify areas with long continuity of important tree species and open woodland conditions. We employed a multidisciplinary approach using paleoecological analyses (regional and local pollen, plant macrofossil, tree ring) and historical sources (taxation documents, land surveys, forest inventories). The estate has been dominated by temperate broad‐leaved trees over most of the studied period. When a forest type of Tilia, Corylus, and Quercus started to decline circa 1,000 years ago, it was largely replaced by Fagus. Even though extensive planting of Picea started in mid‐nineteenth century, Fagus and Quercus have remained rather common on the estate up to present time. Both species show continuity on different parts of the estate from eighteenth century up to present time, but in some stands, for the entire 2,000 years. Our suggestions for restoration do not aim for previous “natural” conditions but to maintain the spatial vegetational pattern created by the historical land use. This study gives an example of the spatial and temporal variation of the vegetation that has historically occurred within one area and emphasizes that information from one methodological technique provides only limited information about an area’s vegetation history.  相似文献   

8.
Six pollen diagrams from peat bogs in the Vltavsky luh (upper Vltava river valley) provide new information about vegetation reconstruction, woodland dynamics, and local development of mires during the Late-glacial and Holocene. Vegetation development began in the Oldest Dryas/B?ling with open park plant cover. In the Aller?d, woodland with Pinus and Betula developed, and in the Younger Dryas there was a steppe tundra with plants of open habitats. In the Pre-boreal, woodland tundra grew. In the Boreal, Corylus spread, and a major expansion of Picea began in the early Boreal. Picea spread during the Atlantic probably by two different migration routes. Fagus immigrated earlier than in the Bayerischer Wald and Oberpf?lzer Wald in the adjoining parts of Germany, and had its major expansion in the early Atlantic. Abies expanded in the late Atlantic. The great abundance of Abies in this area is remarkable, forming Abies or Abies-Fagus woods in less extreme habitats. Human occupation started in the Sub-boreal, as shown by both archaeology and palynology. However, human impact is recognized from anthropogenic indicators which appear in the early Atlantic. At the end of the later Sub-atlantic the development of natural woodland was interrupted by plantation of Picea according to historical and palynological evidence. Received November 13, 2000 / Accepted July 7, 2001  相似文献   

9.
Abstract. The main objectives of this study were to investigate sheep foraging behaviour in mixed Atlantic woodland and to assess its impact on the forest understorey. We established 89 plots along four forest types: Fagus woodland, Quercus woodland, riparian gallery forest and conifer plantations. The presence of plant species in the forest understorey and their foraging damage was surveyed bimonthly from July 1996 to June 1997. In addition, we estimated the selection of woodland types by sheep through the pellet‐group count technique. The intensity of foraging by sheep was negligible for most of the plant species, however several species showed substantial damage in some woodland types. Among the species that were abundant and widespread in the entire study area, Rubus ulmifolius, graminoids and Ilex aquifolium were consumed most. Sheep selected only larch plantations, where grasses and Rubus were very abundant. This grazing behaviour reduced browsing damage of the understorey of woodland stands with higher conservation value, such as Quercus and Fagus woodlands.  相似文献   

10.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

11.
Questions: 1. How do physiography, flooding regime, landscape pattern, land‐cover history, and local soil conditions influence the presence, community structure and abundance of overstorey trees? 2. Can broad‐scale factors explain variation in the floodplain forest community, or are locally measured soil conditions necessary? Location: Floodplain of the lower 370 km of the Wisconsin River, Wisconsin, USA. Methods: Floodplain forest was sampled in 10 m × 20 m plots [n= 405) during summers of 1999 and 2000 in six 12‐ to 15‐km reaches. Results: Species observed most frequently were Fraxinus pennsylvanica, Acer saccharinum and Ulmus americana. Physiography (e.g. geographic province) and indicators of flooding regime (e.g. relative elevation and distance from main channel) were consistently important in predicting occurrence, community composition, and abundance of trees. Correspondence analysis revealed that flood‐tolerant and intolerant species segregated along the primary axis, and late‐successional species segregated from flood‐tolerant species along the secondary axis. Current landscape configuration only influenced species presence or abundance in forests that developed during recent decades. Land‐cover history was important for tree species presence and for the abundance of late‐successional species. Comparison of statistical models developed with and without soils data suggested that broad‐scale factors such as geographic province generally performed well. Conclusions: Physiography and indicators of flood regime are particularly useful for explaining floodplain forest structure and composition in floodplains with a relatively high proportion of natural cover types.  相似文献   

12.
  • 1 The history of a forest stand over the last 6000 years has been reconstructed by studying pollen, macrofossils and charcoal from a small, wet hollow in Suserup Skov on the island of Sjælland in eastern Denmark.
  • 2 The earliest recorded forest was Tilia‐dominated but contained an intimate mixture of many different tree species that included Acer campestre, A. platanoides, Alnus glutinosa, Betula pubescens, Corylus avellana, Frangula alnus, Fraxinus excelsior, Malus sylvestris, Populus tremula, Pinus sylvestris, Quercus robur, Q. petraea, Salix spp., Sorbus aucuparia, Tilia cordata and T. platyphyllos. The preserved fruits of T. platyphyllos confirm its hitherto doubtful status as a native member of the Danish flora.
  • 3 The present‐day woodland developed after a period of intensive anthropogenic disturbance between ≈ 600 bc and ad 900, during which time open canopy conditions prevailed at Suserup. Fagus sylvatica and Fraxinus excelsior are the dominant trees at present, together with some Quercus robur and Ulmus glabra. 4 Charcoal was present in the sediments from most time periods except at the Ulmus decline. In the last 1000 years of the sequence — the period of Fagus dominance — charcoal counts were consistently low.
  • 5 Pinus sylvestris was a natural component of this primarily deciduous forest, and the last macrofossil find dates from c. ad 900. Macrofossil Pinus cone scales recorded c. ad 1800 originate from planted individuals. Prior to Fagus dominance, the forest had an open structure partly caused by frequent, low‐intensity fires associated with the presence of Pinus sylvestris.
  • 6 The replacement of Tilia by Fagus in this forest was catalysed by human activity. If the forest had not been so disturbed, the rich diversity of trees would most probably have persisted up to the present time, with only a moderate‐sized Fagus population.
  相似文献   

13.
Aim To explore rates of rain forest expansion and associated ecological correlates in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia, over the period 1943–91. Location Iron Range National Park and environs, north‐east Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rain forest extant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods Interpretation of change in lowland rain forest vegetation cover was undertaken for a 140 km2 area comprising complex vegetation, geology and physiography using available air photos (1943, 1970 and 1991). A GIS database was assembled comprising rain forest extent for the three time periods, geology, elevation, slope, aspect, proximity to streams and roads. Using standard GIS procedures, a sample of 6996 10 × 10 m cells (0.5% of study area) was selected randomly and attributed for vegetation structure (rain forest and non‐rain forest), and landscape features. Associations of rain forest expansion with landscape features were examined with logistic regression using the subset of cells that had changed from other vegetation types to rain forest, and remained rain forest over the assessment period, and comparing them with cells that showed no change from their original, non‐rain forest condition. Results Rain forest in the air photo study area increased from 45 km2 in 1943 to 78.1 km2 by 1970, and to 82.6 km2 by 1991. Rainfall (and atmospheric CO2 concentration) was markedly lower in the first assessment period (1943–70). Modelled rates of rain forest invasion differed predominantly with respect to substrate type, occurring faster on substrates possessing better moisture retention properties, and across all elevation classes. Greatest expansion, at least in the first assessment period, occurred on the most inherently infertile substrates. Expansion was little constrained by slope, aspect and proximity to streams and roads. On schist substrates, probability of invasion remained high (> 60%) over distances up to 1500 m from mature rain forest margins; on less favourable substrates (diorite, granites), probability of expansion was negligible at sites more than 400 m from mature margins. Main conclusions (i) Rain forest expansion was associated primarily with release from burning pressure from c. the 1920s, following major disruption of customary Aboriginal lifestyles including hunting and burning practices. (ii) Decadal‐scale expansion of rain forest at Iron Range supports extensive observations from the palaeoecological literature concerning rapid rain forest invasion under conducive environmental conditions. (iii) The generality of these substrate‐mediated observations requires further testing, especially given that landscape‐scale rain forest invasion of sclerophyll‐dominated communities is reported from other regions of north‐eastern Australia.  相似文献   

14.
Large‐scale biodiversity data are needed to predict species' responses to global change and to address basic questions in macroecology. While such data are increasingly becoming available, their analysis is challenging because of the typically large heterogeneity in spatial sampling intensity and the need to account for observation processes. Two further challenges are accounting for spatial effects that are not explained by covariates, and drawing inference on dynamics at these large spatial scales. We developed dynamic occupancy models to analyze large‐scale atlas data. In addition to occupancy, these models estimate local colonization and persistence probabilities. We accounted for spatial autocorrelation using conditional autoregressive models and autologistic models. We fitted the models to detection/nondetection data collected on a quarter‐degree grid across southern Africa during two atlas projects, using the hadeda ibis (Bostrychia hagedash) as an example. The model accurately reproduced the range expansion between the first (SABAP1: 1987–1992) and second (SABAP2: 2007–2012) Southern African Bird Atlas Project into the drier parts of interior South Africa. Grid cells occupied during SABAP1 generally remained occupied, but colonization of unoccupied grid cells was strongly dependent on the number of occupied grid cells in the neighborhood. The detection probability strongly varied across space due to variation in effort, observer identity, seasonality, and unexplained spatial effects. We present a flexible hierarchical approach for analyzing grid‐based atlas data using dynamical occupancy models. Our model is similar to a species' distribution model obtained using generalized additive models but has a number of advantages. Our model accounts for the heterogeneous sampling process, spatial correlation, and perhaps most importantly, allows us to examine dynamic aspects of species ranges.  相似文献   

15.
Abstract. The shrub Buxus sempervirens and the trees Abies alba and Fagus sylvatica have recently recolonized old‐pastures in the Central Pyrenees. We mapped all live and dead individuals (> 1.3 m tall) in a large forest plot in Ordesa Valley to examine the importance of density‐dependent processes during recolonization. Biotic interactions were inferred from changes in horizontal structure and the influences of neighbours on tree survival. Buxus differentially influenced establishment and survival of tree species, thereby controlling future canopy composition and spatial structure. The rapidly invading Abies formed denser patches on elevated sites less occupied by Buxus, whereas Fagus preferentially established within shrubs. Abies reached densities which led to intense intraspecific competition and high mortality rates among saplings. Self‐thinning in Abies led to smaller numbers of regularly spaced survivors, and greater relative dominance of Fagus. Disregarding intraspecific effects and abiotic environment, Abies survival was significantly lower under Buxus shrubs, which suggests that the spatial location and abundance of Abies was constrained by the location of Buxus. Fagus survival was not related to Buxus density, but remained significantly lower in denser Abies patches. The higher mortality of Fagus in denser Abies patches, and the resulting spatial segregation of the species, reflects asymmetric interspecific competition. Inhibition from Buxus shrubs and intraspecific competition prevent invading Abies from dominating and may therefore help in maintaining a mixed Abies‐Fagus stand.  相似文献   

16.
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   

17.
Suitability of trees as hosts for epiphytic lichens are studied in a forest stand of size 25 ha. Suitability is measured as occupation probabilites which are modelled using hierarchical Bayesian approach. These probabilities are useful for an ecologist. They give smoothed spatial distribution map of suitability for each of the species and can be used in detecting high‐ and low‐probability areas. In addition, suitability is explained by tree‐level covariates. Spatial dependence, which is due to unobserved spatially structured covariates, is modelled through an unobserved Markov random field. Markov chain Monte Carlo method has been applied in Bayesian computation. The extensive spatial data consist of the occurrences of eight lichen species and one bryophyte on all of the 1253 potential host trees. In addition, coordinates of the trees and several tree characteristics have been recorded. The data have been analysed for four most abundant species: Lobaria pulmonaria, Nephroma bellum, Nephroma parile and Peltigera praetextata. The tree level parameters, subject to estimation, consist of the occurrence probabilities for each tree and for each lichen species. Model validation is discussed in detail and, in addition to Bayesian validation tools, the autologistic model and case‐control design based on logistic regression have been suggested for validation of covariate effects. As a result we present suitability maps for the four lichen species. We observed, that among the observed tree covariates, the diameter at breast height (DBH) correlates with lichen occurrence. Our modelling approach has close connections to disease mapping in spatial epidemiology.  相似文献   

18.
Question: Can recent satellite imagery of coarse spatial resolution support forest cover assessment and mapping at the regional level? Location: Continental southeast Asia. Methods: Forest cover mapping was based on digital classification of SPOT4‐VEGETATION satellite images of 1 km spatial resolution from the dry seasons 1998/1999 and 1999/2000. Following a geographical stratification, the spectral clusters were visually assigned to land cover classes. The forest classes were validated by an independent set of maps, derived from interpretation of satellite imagery of high spatial resolution (Landsat TM, 30 m). Forest area estimates from the regional forest cover map were compared to the forest figures of the FAO database. Results: The regional forest cover map displays 12 forest and land cover classes. The mapping of the region's deciduous and fragmented forest cover remained challenging. A high correlation was found between forest area estimates obtained from this map and from the Landsat TM derived maps. The regional and sub‐regional forest area estimates were close to those reported by FAO. Conclusion: SPOT4‐VEGETATION satellite imagery can be used for mapping consistently and uniformly the extent and distribution of the broad forest cover types at the regional scale. The new map can be considered as an update and improvement on existing regional forest cover maps.  相似文献   

19.
Abstract. We reconstructed forest development and disturbance events (fire and logging) during the last 1000 yr with tree‐ring data, pollen and charcoal analysis from a semi‐natural Fagus sylvatica‐Picea abies forest (ca. 1 km2) in the hemiboreal zone. According to pollen analysis, Quercus robur together with Pinus sylvestris was abundant in the forest until the turn of the 18th/19th centuries when these species disappeared completely (Quercus) or nearly completely (Pinus) and were replaced by Fagus and Picea. The disappearance of Quercus was corroborated by the remarkable discovery of a single Quercus stump that had been cut in the 18th century and had become overgrown and preserved by a very old Picea. In total 11 fires were dated from 1555 to 1748 from fire scars in several Pinus stumps cut 100 ‐ 200 yr ago. Since the last fire in 1748, no Quercus or Pinus have regenerated in the core of the reserve apart from single pines in neighbouring managed forest (80 yr ago). During the period of documented fires Fagus was protected from fires in a refuge made up of large boulders. Picea colonized the region at the time when the fires ceased 250 yr ago. We hypothesize that most of the fires were probably of human origin because of their patchiness and high frequency compared to the natural background levels of lightning ignitions in the region. On a 300‐yr time scale, logging and fire suppression seem to strongly overshadow the effect of climate change on forest composition and dynamics.  相似文献   

20.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号