共查询到20条相似文献,搜索用时 15 毫秒
1.
KCl cotransport is an important modulator of human cervical cancer growth and invasion 总被引:7,自引:0,他引:7
Shen MR Chou CY Hsu KF Hsu YM Chiu WT Tang MJ Alper SL Ellory JC 《The Journal of biological chemistry》2003,278(41):39941-39950
Cervical cancer is a major world health problem for women, but the pathophysiology of this disease has received scant attention. Here we show that the growth and invasion of cervical cancer cells are strongly linked the expression and activity of the KCl cotransporter (KCC), an important regulator of the ionic and cellular osmotic homeostasis. Functional assays of KCl cotransport activation by osmotic swelling, staurosporine, and N-ethylmaleimide indicate that removal of the N-terminal 117 amino acids from KCC1 produces a dominant-negative loss-of-function phenotype for KCl cotransport in human cervical cancer cells. The capability for regulatory volume decrease is much attenuated in the loss-of-function KCC mutant cervical cancer cells. The loss-of-function KCC mutant cervical cancer cells exhibit inhibited cell growth accompanied by decreased activity of the cell cycle gene products retinoblastoma and cdc2 kinase. Reduced cellular invasiveness is in parallel by reduced expression of alpha v beta 3 and alpha 6 beta 4 integrins, accompanied by decreased activity of matrix metalloproteinase 2 and 9. Inhibition of tumor growth in SCID mice confirms the crucial role of KCC in promoting cervical cancer growth and invasion. Thus, blockade of KCl cotransport may be a useful therapeutic adjunctive strategy to retard or prevent cervical cancer invasion. 相似文献
2.
3.
4.
Fukuda R Hirota K Fan F Jung YD Ellis LM Semenza GL 《The Journal of biological chemistry》2002,277(41):38205-38211
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells. 相似文献
5.
Belotti D Calcagno C Garofalo A Caronia D Riccardi E Giavazzi R Taraboletti G 《Molecular cancer research : MCR》2008,6(4):525-534
Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP) regulate each other, contributing to tumor progression. We have previously reported that MMP9 induces the release of tumor VEGF, promoting ascites formation in human ovarian carcinoma xenografts. The aim of this study was to investigate whether tumor-derived VEGF regulated the expression of gelatinase by the stroma, influencing the invasive properties of ovarian tumors. Tumor variants derived from 1A9 human ovarian carcinoma, stably expressing VEGF(121) in the sense (1A9-VS-1) and antisense orientations (1A9-VAS-3), were used. In vivo, zymographic analysis of tumors from 1A9-VS-1 implanted in the peritoneal cavity of nude mice showed higher levels of gelatinases, particularly murine MMP9, indicating that VEGF stimulates host expression of the matrix-degrading enzyme. Murine MMP9 expression was also high in the ovaries of mice bearing 1A9-VS-1 tumors. The effect on host MMP9 activity was organ-specific. The levels of host pro-MMP9 in ovaries correlated with the plasma levels of tumor VEGF and with the selective invasion of the ovaries. Induction of host MMP9 expression in tumors and ovaries was independent of the site of tumor growth as it was seen in mice carrying both intraperitoneal and subcutaneous tumors. The anti-VEGF antibody bevacizumab (Avastin) inhibited MMP9 expression and tumor invasion in the ovaries of mice bearing 1A9-VS-1 tumors. These findings point to a complex cross-talk between VEGF and MMPs in the progression of ovarian tumor and suggest the possibility of using VEGF inhibitors to affect MMP-dependent tumor invasion. 相似文献
6.
Park KS Kim MK Lee HY Kim SD Lee SY Kim JM Ryu SH Bae YS 《Biochemical and biophysical research communications》2007,356(1):239-244
OVCAR3 ovarian cancer cells express three sphingosine 1-phosphate (S1P) receptors, S1P(1), S1P(2), and S1P(3), but not S1P(4). Stimulation of OVCAR3 cells with S1P induced intracellular calcium increases, which were partly inhibited by VPC 23019 (an S1P(1/3) antagonist). S1P-induced calcium increases were mediated by phospholipase C and pertussis toxin (PTX)-sensitive G-proteins in OVCAR3 cells. S1P stimulated extracellular signal-regulated kinase, p38 kinase, and Akt which were inhibited by PTX. S1P-stimulated chemotactic migration of OVCAR3 cells in a PTX-sensitive manner, indicating crucial role of G(i) protein(s) in the process. S1P-induced chemotactic migration of OVCAR3 cells was completely inhibited by LY294002 and SB203580. Pretreatment of VPC 23019 (an S1P(1/3) antagonist) completely inhibited S1P-induced chemotaxis. S1P also induced invasion of OVCAR3 cells, which was also inhibited by VPC 23019. Taken together, this study suggests that S1P stimulate chemotactic migration and cellular invasion, and VPC 23019-sensitive S1P receptor(s) might be involved in the processes. 相似文献
7.
Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells 总被引:1,自引:0,他引:1
It has been widely reported that Interleukin-6 (IL-6) is overexpressed in the serum and ascites of ovarian cancer (OVCA) patients, and elevated IL-6 level correlates with poor prognosis and survival. However, the exact role that IL-6 plays in this malignancy or whether IL-6 can regulate tumorigenic properties has not been established. Here we demonstrate that overexpression of IL-6 in non-IL-6-expressing A2780 cells (by transfecting with plasmid encoding for sense IL-6) increases anchorage-independent growth, proliferation, adhesion and invasion, while depletion of endogenous IL-6 expression in IL-6-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-6) decreases. Further investigation indicates that IL-6 promotes OVCA cell proliferation by altering cell cycle distribution rather than inhibiting apoptosis and that IL-6-enhanced OVCA cell invasive may be associated with increased matrix metalloproteinase (MMP)-9 but not MMP-2 proteolytic activity. In addition, overexpressing or deleting of IL-6 in OVCA cells enhances or reduces its receptor (IL-6Rα and gp130) expression and basal phosphorylation levels of both ERK and Akt, and additional treatment with specific inhibitor of the ERK or Akt signaling pathway significantly inhibits the proliferation of IL-6-overexpressing A2780 cells. Our data suggest that the autocrine production of IL-6 by OVCA cells regulates tumorigenic properties of these cells by inducing IL-6 signaling pathways. Thus, regulation of IL-6 expression or its related signaling pathway may be a promising strategy for controlling the progression of OVCA. 相似文献
8.
Jing Wang Qian-jin Liao Yi Zhang Hui Zhou Chen-hui Luo Jie Tang Ying Wang Yan Tang Min Zhao Xue-heng Zhao Qiong-yu Zhang Ling Xiao 《Biochemical and biophysical research communications》2014
Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions. 相似文献
9.
10.
It has been shown that IL-8 is elevated in ovarian cyst fluid, ascites, serum, and tumor tissue from ovarian cancer (OVCA) patients, and increased IL-8 expression correlates with poor prognosis and survival. However, the exact role that IL-8 plays in this malignancy or whether IL-8 can regulate malignant behavior has not been established. Here we demonstrate that overexpression of IL-8 in non-IL-8-expressing A2780 cells (by transfecting with plasmid encoding for sense IL-8) increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion while depletion of endogenous IL-8 expression in IL-8-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-8) decreases the above effects. Further investigation indicates that IL-8-stimulated cell proliferation correlates with alteration of cell cycle distribution by increasing levels of cell cycle-regulated Cyclin D1 and Cyclin B1 proteins as well as activation of PI3K/Akt and Raf/MEK/ERK, whereas IL-8-enhanced OVCA cell invasive correlates with increased MMP-2 and MMP-9 activity and expression. Our data suggest that IL-8 secreted by OVCA cells promotes malignant behavior of these cells via inducing intracellular molecular signaling. Therefore, modulation of IL-8 expression or its related signaling pathway may be a promising strategy for controlling the progression and metastasis of OVCA. 相似文献
11.
Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth 总被引:46,自引:8,他引:46
下载免费PDF全文

M Parvinen M Pelto-Huikko O S?der R Schultz A Kaipia P Mali J Toppari H Hakovirta P L?nnerberg E M Ritzén 《The Journal of cell biology》1992,119(3):629-641
beta-Nerve growth factor (NGF) is expressed in spermatogenic cells and has testosterone-downregulated low-affinity receptors on Sertoli cells suggesting a paracrine role in the regulation of spermatogenesis. An analysis of the stage-specific expression of NGF and its low affinity receptor during the cycle of the seminiferous epithelium in the rat revealed NGF mRNA and protein at all stages of the cycle. Tyrosine kinase receptor (trk) mRNA encoding an essential component of the high-affinity NGF receptor was also present at all stages. In contrast, expression of low affinity NGF receptor mRNA was only found in stages VIIcd and VIII of the cycle, the sites of onset of meiosis. The low-affinity NGF receptor protein was present in the plasma membrane of the apical Sertoli cell processes as well as in the basal plasma membrane of these cells at stages VIIcd to XI. NGF was shown to stimulate in vitro DNA synthesis of seminiferous tubule segments with preleptotene spermatocytes at the onset of meiosis while other segments remained nonresponsive. We conclude that NGF is a meiotic growth factor that acts through Sertoli cells. 相似文献
12.
In this study we show that insulin-like growth factor (IGF)-I selectively promotes survival and differentiation of amacrine neurons. In cultures lacking this factor, an initial degeneration pathway, selectively affecting amacrine neurons, led to no lamellipodia development and little axon outgrowth. Cell lysis initially affected 50% of amacrine neurons; those remaining underwent apoptosis leading to the death of approximately 95% of them by day 10. Apoptosis was preceded by a marked increase in c-Jun expression. Addition of IGF-I or high concentrations (over 1 microM) of either insulin or IGF-II to the cultures prevented the degeneration of amacrine neurons, stimulated their neurite outgrowth, increased phospho-Akt expression and decreased c-Jun expression. The high insulin and IGF-II concentrations required to protect amacrine cells suggest that these neurons depend on IGF-I for their survival, IGF-II and insulin probably acting through IGF-I receptors to mimic IGF-I effects. Inhibition of phosphatidylinositol-3 kinase (PI 3-kinase) with wortmannin blocked insulin-mediated survival. Wortmannin addition had similar effects to IGF-I deprivation: it prevented neurite outgrowth, increased c-Jun expression and induced apoptosis. These results suggest that IGF-I is essential for the survival and differentiation of amacrine neurons, and activation of PI 3-kinase is involved in the intracellular signaling pathways mediating these effects. 相似文献
13.
N Takasu M Takasu I Komiya Y Nagasawa T Asawa Y Shimizu T Yamada 《The Journal of biological chemistry》1989,264(31):18485-18488
Insulin-like growth factor (IGF-I) stimulates thyroid cell proliferation. Using primary cultured porcine thyroid cells, we studied the intracellular pathways that mediate the action of IGF-I on thyroid cell proliferation. IGF-I stimulates inositol phosphate accumulation, a rise in cytoplasmic free calcium [( Ca2+]i), and cell proliferation. Exposure to IGF-I results in a time- and dose-dependent accumulation of inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. IGF-I also increases [Ca2+]i, measured using fura-2, a fluorescent Ca2+ indicator; the IGF-I-induced [Ca2+]i response occurs immediately, reaches a maximum within 1 min, and then slowly declines. IGF-I stimulates thyroid cell proliferation, stimulates thymidine incorporation, and increases cell numbers. The IGF-I-induced inositol phosphate accumulation and [Ca2+]i response parallel thyroid cell proliferation in a dose-dependent manner; the maximal response is observed at a concentration of 100 ng/ml IGF-I, with half-maximal stimulation at approximately 10 ng/ml. Inositol phosphate accumulation and [Ca2+]i response after IGF-I stimulation may function as intracellular messengers for thyroid cell proliferation. This report may constitute the first demonstration of IGF-I-stimulated inositol phosphate accumulation and [Ca2+]i response in the cells. 相似文献
14.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis G1. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells from stationary culture (G0 phase) whose development is independent of the growth factors in the medium. 相似文献
15.
Regulation of proliferation, invasion and growth factor synthesis in breast cancer by steroids 总被引:3,自引:0,他引:3
R B Dickson E W Thompson M E Lippman 《The Journal of steroid biochemistry and molecular biology》1990,37(3):305-316
Endogenous ovarian estrogens and progestins appear to play a critical role in the development and progression of breast cancer. Local productions of growth factors probably also contribute to malignant proliferation, while production and activation of collagenolytic enzymes may be equally critical for local invasive processes. The current review focuses on characterization of growth factor-receptor systems operant in normal and malignant breast epithelium. In addition, the determinants of local invasion are reviewed: attachment, modality, and proteose secretion. Finally, data are discussed concerning the regulation of both proliferation and invasion by hormones and antihormonal agents in hormone-dependent breast cancer. The results suggest new potential pharmacologic targets to explore to suppress onset and progression of breast cancer. 相似文献
16.
Qiang R Wang F Shi LY Liu M Chen S Wan HY Li YX Li X Gao SY Sun BC Tang H 《The international journal of biochemistry & cell biology》2011,43(4):632-641
Plexin-B1, the receptor for Sema4D, has been reported to trigger multiple and sometimes opposing cellular responses in various types of tumor cells. It has been implicated in the regulation of tumor-cell survival, proliferation, angiogenesis, invasion and metastasis. However, the plexin-B1 gene expression and its regulatory mechanism in cervical cancer remain unclear. The present study shows that plexin-B1 is over-expressed in cervical tumor tissues compared to normal cervical tissues by immunohistochemistry, Western blotting and quantitative RT-PCR. The expression of plexin-B1 is significantly associated with cervical tumor metastasis and invasion according to the analysis of the clinicopathologic data. Plexin-B1 also promotes proliferation, migration and invasion in human cervical cancer HeLa cells. We also found that the plexin-B1 levels are inversely correlated with miR-214 amounts in both cervical cancer tissues and HeLa cells. And miR-214 expression level is also associated with metastasis and invasion of cervical tumor. Furthermore, we demonstrate that plexin-B1 is inhibited by miR-214 through a miR-214 binding site within the 3'UTR of plexin-B1 in HeLa cells. Ectopic expression of miR-214 could inhibit the proliferation capacity, migration and invasion ability of HeLa cells. Our findings suggest that plexin-B1, a target of miR-214, may function as an oncogene in human cervical cancer HeLa cells. 相似文献
17.
Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways 总被引:10,自引:0,他引:10
Descamps S Toillon RA Adriaenssens E Pawlowski V Cool SM Nurcombe V Le Bourhis X Boilly B Peyrat JP Hondermarck H 《The Journal of biological chemistry》2001,276(21):17864-17870
18.
《Cell cycle (Georgetown, Tex.)》2013,12(6):972-986
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis. 相似文献
19.
We have sought to determine whether insulin-like growth factor I (IGF-I) regulates the levels of insulin receptor substrate-1 (IRS-1) in prostate epithelial cells. Exposure of prostate epithelial cells to IGF-I in the absence of other growth factors leads to a reduction in IRS-1 levels. Ubiquitin content of IRS-1 is increased in the presence of IGF-I, and inhibitors of the proteasome prevented the reduction of IRS-1 levels seen following IGF-I exposure. These results imply that IRS-1 is targeted to the proteasome upon exposure to IGF-I. The addition of epidermal growth factor (EGF) maintained IRS-1 levels even in the presence of IGF-I and inhibits IGF-I-dependent ubiquitination of IRS-1. Thus, these two growth factors, IGF-I and EGF, had antagonistic effects on IRS-1 protein levels in prostate epithelial cells. This regulation of IRS-1 reveals a novel level of cross-talk between the IGF-I and EGF signal pathways, which may have implications in tumors that harbor activating mutations in the EGF receptor. 相似文献