首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was undertaken to evaluate alternative insect cell lines to Sf9 [from Spodoptera frugiperda (fall armyworm)] for the production of recombinant proteins. Insect cell lines from two different organisms were considered: IPLB-LdEIta (LdEIta) from Lymantria dispar (gypsy moth) and IPLB-HvT1 (HvT1) from Heliothis virescens (tobacco budworm). Both LdEIta and HvT1 produced higher total activity levels of recombinant beta-galactosidase in monolayer culture than Sf9 after infection with the Autographa californica nuclear polyhedrosis virus (AcMNPV). However, only LdEIta generated a product yield (activity per milligram of total protein) which exceeded that of Sf9 (by 25%), so its growth and production characteristics were investigated in depth. LdEIta generated production levels and yields of a recombinant rotaviral protein, VP4, which exceeded those of Sf9 by 84 and 38%, respectively. In suspension culture, the LdEIta cells grew as aggregates with a doubling time several hours longer than Sf9, but the recombinant product yields of LdEIta were still higher than Sf9 by 38% in this culture environment. beta-Galactosidase expression rates and cell death rates suggested that the difference in productivity between the two hosts was due to the ability of LdEIta to survive the baculovirus infection and produce recombinant proteins longer than Sf9. The presence of LdEIta aggregates in suspension culture may be used as a method to separate live cells from dead cells, labile product, and spent medium in recombinant protein production processes.  相似文献   

2.
Spodoptera frugiperda (Sf9) insect cells were successfully cultured in serum-free medium in a 14-L airlift bioreactor. Cell densities as high as 1 x 10(7) cells/mL were achieved with specific growth rates of approximately 0.0286 h-1 (doubling time of 24 h). This system was also used to demonstrate the expression of a reported gene, beta-galactosidase (beta-gal), when cells were infected with a recombinant baculovirus. Approximately 0.33 mg of beta-gal/mL (i.e., 104,000 units/mL) of medium were obtained at the 14-L scale, while about 0.95 mg of beta-gal/mL (i.e., 285,000 units/mL) of medium were obtained in small-scale shaker flasks. The difference was attributed to a suboptimal infection in the large scale. Specific oxygen consumption rates decreased from 5.58 x 10(-17) mol O2/cell.s in early exponential growth to 3.13 x 10(-17) mol O2/cell.s at 3 days post-infection.  相似文献   

3.
The insect cell (Sf9)-baculovirus (AcNPV) expression system was employed for the synthesis of beta-galactosidase, a model heterologous protein. In the recombinant virus studied, the lacZ gene is fused to a portion of the polyhedrin structural gene and is under the control of the polyhedrin promoter. The effect of the multiplicity of infection (MOI) on product titer was determined by infecting cells with MOI values ranging from 0 to 100 and monitoring the production of beta-galactosidase with time. The relationship between final product titer and MOI was dependent on the growth phase of the cells prior to infection. The final product titer from cells infected in the early exponential phase was relatively independent of MOI. For cells infected in late-exponential phase there was a logarithmic relationship between the final beta-galactosidase titer and the MOI used, with the highest MOI studied resulting in greatest protein synthesis. The synthesis and degradation rates of beta-galactosidase were investigated by a pulse-chase technique using L-[(35)S]-methionine. At 24 h postinfection, the degradation rate is of the same order of magnitude as the synthesis rate. However, the synthesis rate of beta-galactosidase increases dramatically at 96 h postinfection. During this later period, the degradation rate is negligible. Although degradation of recombinant protein occurs in this system, degradation activity declines as infection proceeds and is insignificant late in intention when recombinant protein expression is intense.  相似文献   

4.
Eight cell lines derived from the insects Spodoptera frugiperda, Trichoplusia ni, Mamestra brassicae, and Estigmene acrea were evaluated for recombinant beta-galactosidase and infectious virus production following infection with the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV). Production was assessed on a specific (per cell and per microgram of uninfected cellular protein) and on a volumetric (per milliliter) basis. Cell density was found to be an important factor in comparing the cell lines due to a density-dependent inhibition of specific protein and virus production that appeared to result from cell-cell contact. After infection of cells at low-density specific beta-galactosidase production per cell would drop between 3- and 6-fold in five of the eight cell lines when plated on tissue culture plates at near-confluent and confluent cell densities. The cell lines Sf 21 and Sf 9 were least sensitive to cell density. After accounting for cell density effects and differences in cell size, two cell lines, BTI Tn 5B1-4 and BTI TnM, were identified that were superior to the other cell lines, including Sf 21 and Sf 9, in beta-galactosidase production. Optimal volumetric and specific beta-galactosidase production from Tn 5B1-4 and TnM cells was 2-fold and 5-fold higher, respectively, in both cell lines than the optimal production from Sf 9 or Sf 21 cells. The Tn 5B1-4 cell line also had the highest viability of all the cell lines at 3 days postinfection and could be adapted to serum-free media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of conditioned medium (CM) and passage number on Spodoptera frugiperda Sf9 cell physiology and productivity have been studied. Low passage (LP) cells at passages 20-45 were compared to high passage (HP) cells at passages >100. Addition of 20% CM or 10 kDa filtrated CM to LP cells promoted growth. LP cells passed a switch in growth kinetics, characterized by a shorter lag phase and a higher growth rate, after 30-40 passages. After this point, CM lost its stimulating effect on proliferation. HP cells displayed a still shorter lag phase and reached the maximum cell density 24-48 earlier than LP cells. HP cells also exhibited higher specific productivity of recombinant protein compared to LP cells, when infected with baculovirus during the initial 48 h of culture. The specific productivity of LP cells was decreased by 30-50% by addition of 20% CM or 10 kDa filtrated CM, whereas addition of CM to cells having passed the switch in growth kinetics had no negative effect on productivity. Cell cycle analysis showed that a large proportion of HP cells, >60%, was transiently arrested in G2/M after inoculation. In LP cultures this proportion was lower, 40-45%, and addition of CM decreased the arrested population further. This correlated to the cell size, the HP cells being the largest: HP cells > LP > LP + 20% CM > LP + 20% 10 kDa filtrated CM. Since the degree of synchronization in G2/M correlated to the productivity, yeastolate limitation was used to achieve 85% G2/M synchronized cells. In this culture the specific productivity was maintained during a prolonged production phase and a 69% higher volumetric yield was obtained. The results suggest that a decreasing degree of synchronization during the course of culture partly explains the cell-density-dependent drop in productivity in Sf9 cells.  相似文献   

6.
The cell cycle dependency of foreign gene expression in recombinant mouse L cells was investigated. Two different recombinant mouse L cell lines having the glucocorticoid receptor-encoding gene and the lacZ reporter gene were used in this study. The lacZ gene expression was controlled by the glucocorticoid-inducible mouse mammary tumor virus (MMTV) promoter in both cell lines. In "M4" cells the gr gene was under the control of another MMTV promoter, but in "R2" cells it was under the control of the constitutive Rous sarcoma virus promoter. These normally attachment-grown cells were adapted to suspension culture, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in exponential growth without any addition of the glucocorticoid inducer, dexamethasone. Cell cycle positions in the S phase were estimated on the basis of DNA content per cell, and position in the G1 phase was estimated on the basis of cell size as measured by pulse-width time of flight. The results showed that beta-galactosidase synthesis occurred through all cell cycle phases, but the expression rate in the G1 phase was much lower than that in the S and G2/M phases in both cell lines. On the basis of cell size analysis, beta-galactosidase expression in M4 cells (with autoinducible promoter) was found to be higher than that in R2 cells (with inducible promoter) during the G1 phase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Sf9 cells have obvious advantages for the conventional production technology of vaccine. They are useful tools for high concentration and large-scale cultures. Sf9 cells were grown to maximal concentration, 8 x 10(6) cells/ml in a 500ml spinner flask, with a doubling time at the exponentially growing phase of 24.5 hours, using serum-free media. To explore the ability of Sf9 cells to be infected by the Japanese encephalitis (JE) virus Beijing-1 strain, Sf9 cells were infected with the virus. By 4-5 days post-infection, 10-15% of the Sf9 cells showed cytopathic effect (CPE), from granularity to the formation of syncytia and multinucleated giant cells continuously observed over a period of 35 days. Positive fluorescent reactions were detected in 30-40% of cells infected with the JE virus Beijing-1 strain, and the uninfected Sf9 cells were completely negative. Virus particles, propagated in Sf9 and Vero cells, were concentrated by sedimentation on 40% trehalose cushions by ultracentrifugation, and showed identical patterns of viral morphogenesis. Complete virus particles, 40 to 50 nm in diameter, were observed, and JE virus envelope (E) proteins, at 53 kDa, were found in the western blot analysis to the anti-JE virus E protein monoclonal antibody and reacted as a magenta band in the same position to the glycoprotein staining. To evaluate whether the infectious virus was produced in Sf9 cells inoculated with the JE virus Beijing-1 stain, Sf9 cells were inoculated with the virus, and sample harvested every 5 days. The titers of the JE virus Beijing-1 strain rose from 1.0 x 10(5) to 1.5 x 10(6) pfu/ml. The infected Sf9 cells could be sub-cultured in serum-free medium, with no change in the plaque sizes formed by the JE virus Beijing-1 strain in the plaque assay. It is suggested that the ability of the JE virus Beijing-1 strain to infect Sf9 cells in serum-free media will provide a useful insect cell system, where the JE virus replication, cytopathogenicity and vaccine immunogen can be studied.  相似文献   

8.
The properties of Sf9 and Tn5 insect cells were analyzed comparatively under serum-free culture conditions. Sf9 cells in SF900II medium apparently utilized sucrose as a primary nutrient both before and after virus infection, yielding small amounts of lactate and ammonia. Tn5 cells in Excell 401 medium consumed all the nutrients examined, including sucrose. The productivity of a recombinant glycoprotein, OSF-2, by Tn5 cells, was moderate in both monolayer and spinner cultures, but the ability to secrete it was compromised in the former case. Relative to the Tn5 cultures, Sf9 produced 30-fold more OSF-2 in either culture mode. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Rat choline acetyltransferase (ChAT) has been expressed at a high level in Spodoptera frugiperda Sf9 cells using a baculovirus expression system. A cDNA containing the coding sequence for ChAT was inserted into the transfer vector pAcYM1 to yield the recombinant vector pAcYM1/ChAT. Sf9 cells were then coinfected with pAcYM1/ChAT and the wild-type Autographa californica virus. One recombinant virus particle, containing the cDNA for ChAT, was selected that expressed a protein of 68.5 kDa. Forty hours after infection of cells with the recombinant virus, the specific activity of ChAT in the cytosol was 190 nmol of acetylcholine/min/mg of protein, accounting for approximately 24% of the cell cytosolic proteins as being ChAT. The apparent Km values of the enzyme for choline and acetyl-CoA were 299 and 221 microM, respectively, whereas the respective Vmax values were 10.6 and 11.4 mumol of acetylcholine/min/mg of protein. In addition, analysis of the protein revealed that ChAT is phosphorylated in Sf9 cells. About 0.5 mg of ChAT was obtained from a one-step purification procedure starting with 10(8) infected Sf9 cells. Addition of choline to the incubation medium led to accumulation of high amounts of acetylcholine in the cytosol of the infected cells. The neurotransmitter was not released by Sf9 cells in response to membrane depolarization or on ionophore-mediated calcium entry. Some acetylcholine, which most likely originated from cell death inherent to viral infection, accumulated in the culture medium. The infected insect cells, which synthesize and store neurotransmitter, provide a new and convenient model for analyzing synaptic transmission at the molecular level.  相似文献   

10.
Hyperosmotic pressure increased specific antibody productivity (q(Ab)) of recombinant Chinese hamster ovary (rCHO) cells (SH2-0.32) and it depressed cell growth. Thus, the use of hyperosmolar medium did not increase the maximum antibody concentration substantially. To overcome this drawback, the feasibility of biphasic culture strategy was investigated. In the biphasic culture, cells were first cultivated in the standard medium with physiological osmolality (294 mOsm/kg) for cell growth. When cells reached the late exponential growth phase, the spent standard medium was replaced with the fresh hyperosmolar medium (522 mOsm/kg) for antibody production. The q(Ab) in growth phase with the standard medium was 2.1 microg per 10(6) cells/d, whereas the q(Ab) in antibody production phase with the hyperosmolar medium was 11.1 microg per 10(6) cells/d. Northern blot analysis showed a positive relationship between the relative contents of intracellular immunoglobulin messenger ribonucleic acid and q(Ab). Because of the enhanced q(Ab) and the increased cell concentration in biphasic culture, the maximum antibody concentration obtained in biphasic culture with 522 mOsm/kg medium exchange was 161% higher than that obtained in batch culture with the standard medium. Taken together, the simple biphasic culture strategy based on hyperosmotic culture is effective in improving antibody production of rCHO cells.  相似文献   

11.
Substrate limitation in the baculovirus expression vector system   总被引:1,自引:0,他引:1  
The inability to infect insect cell cultures at the highest achievable cell densities has imposed major limitations to both the fundamental understanding of the Baculovirus Expression Vector System (BEVS) as well as full exploitation of its potential productive capacity for recombinant (beta-galAcNPV) products. The current literature does not characterize and identify the exact nature of the observed limitations, which therefore has become the major objective and contribution of the following study. Critical densities for infection of Spodoptera frugiperda (Sf9) cells with nuclear polyhedrosis virus expressing beta-galactosidase (Autographa californica) grown in media both containing fetal calf serum (FCS) and free of serum were found to be at 2 x 10(6) and 5 x 10(6) cells/ml respectively. Medium exchange was found to completely reverse the effect if renewed up to 24 hours post-infection (HPI). The inevitable arrest of uninfected cell growth and decreased production of recombinant products at high cell densities of infection were both correlated to nutrient depletion. Cystine was found to be depleted in uninfected insect cell cultures at the onset of the stationary phase and in serum-free insect cell cultures infected with baculovirus above a cell density of 5 x 10(6) cells/ml. Neither glucose depletion nor accumulation of possible inhibitory metabolites such as alanine, ammonia, or lactate could be correlated to growth arrest or decreased recombinant product yields. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 32-44, 1997.  相似文献   

12.
Protein production capabilities ofTrichpolusia ni (TN 368) cells andSpodoptera frugiperda (Sf9) cells were compared in GTC100 medium in suspension culture using as a vector a genetically engineeredAutographa californica nuclear polyhedrosis virus. TN 368 produces more -galactosidase than Sf9, on a per cell basis (2.2×105 and 1.7×105 units/ 106 cells1 respectively). In growth experiments serum-free medium supported a higher maximum Sf9 cell density (4±1×106 cells/ml) than the serum- based media (1.5±5×106 cells/ml in GTC100 and 2±1×106 cells/ml in TNM-FH). However, using a cell density of 5×05 cells/ml, the productivity per cell varied, from a low of 4.5×104 units in EX-CELL-400 medium to a high of 7.6×104 units in TNM-FH. The TN 368 cells were twice a large as Sf9 cells and appeared to be more shear sensitive than Sf9 cells.  相似文献   

13.
Cell cycle progression was studied in serum-free batch cultures of Spodoptera frugiperda (Sf9) insect cells, and the implications for proliferation and productivity were investigated. Cell cycle dynamics in KBM10 serum-free medium was characterized by an accumulation of 50-70% of the cells in the G(2)/M phase of the cell cycle during the first 24 h after inoculation. Following the cell cycle arrest, the cell population was redistributed into G(1) and in particular into the S phase. Maximum rate of proliferation (micro(N, max)) was reached 24-48 h after the release from cell cycle arrest, coinciding with a minimum distribution of cells in the G(2)/M phase. The following declining micro(N) could be explained by a slow increase in the G(2)/M cell population. However, at approximately 100 h, an abrupt increase in the amount of G(2)/M cells occurred. This switch occurred at about the same time point and cell density, irrespective of medium composition and maximum cell density. An octaploid population evolved from G(2)/M arrested cells, showing the occurrence of endoreplication in this cell line. In addition, conditioned medium factor(s) were found to increase micro(N,max), decrease the time to reach micro(N,max), and decrease the synchronization of cells in G(2)/M during the lag and growth phase. A conditioned medium factor appears to be a small peptide. On basis of these results we suggest that the observed cell cycle dynamics is the result of autoregulatory events occurring at key points during the course of a culture, and that entry into mitosis is the target for regulation. Infecting the Sf9 cells with recombinant baculovirus resulted in a linear increase in volumetric productivity of beta-galactosidase up to 68-75 h of culture. Beyond this point almost no product was formed. Medium renewal at the time of infection could only partly restore the lost hypertrophy and product yield of cultures infected after the transition point. The critical time of infection correlated to the time when the mean population cell volume had attained a minimum, and this occurred 24 h before the switch into the G(2)/M phase. We suggest that the cell density dependent decrease in productivity ultimately depends on the autoregulatory events leading to G(2)/M cell cycle arrest.  相似文献   

14.
旨在利用杆状病毒系统表达、制备人视黄醇结合蛋白(RBP4)并检测其免疫原性。将人RBP4基因片段及信号肽SS64片段亚克隆到杆状病毒转移载体pFastBac-dual(pFBd)中,获得相应的重组转移质粒;转化大肠杆菌菌株DH10bac,转座后经筛选获得重组穿梭质粒rbacmid,将重组穿梭质粒转染孔板培养的Sf9细胞,获得含人RBP4表达框的重组杆状病毒,经过扩增获得毒种。毒种感染对数生长期的Sf9细胞并表达人RBP4蛋白(I-RBP4),通过SDS-PAGE和Western blotting对表达蛋白进行检测和鉴定。用毒种感染悬浮培养的Sf9细胞制备一批RBP4蛋白,完成SDS、Western blotting的检测及少量的多抗制备。纯化重组蛋白并与E.coli重组人RBP4(E-RBP4)分别免疫家兔。实验结果,酶切鉴定及测序证实重组转移质粒构建正确;成功构建重组RBP4-bacmid;人RBP4蛋白在昆虫细胞获得高效表达。表达的RBP4蛋白可以分泌到培养基中,分子量约为23 kDa,经过计算表达量为100 mg/L;纯化蛋白免疫兔子制备了多抗血清,血清滴度为1∶100 000,高于原核表达的抗体滴度(1∶10 000),与人体提纯蛋白制备的抗体滴度相近。杆状病毒系统高效表达了人的RBP4蛋白,具有较好的抗原性,并获得高亲和力的抗血清,为下一步的人血RBP4检测试剂盒的制备打下了坚实的基础。  相似文献   

15.
This paper describes the setup and the use of a flow cytometric method for monitoring Sf9 insect cell infection by a recombinant baculovirus expressing the human alpha1,3/4 fucosyltransferase Fuc-TIII. Using side scattered light coupled to green fluorescence detection after immunolabeling of the recombinant protein, this method made it possible to monitor baculovirus infection of Sf9 cells grown in batch cultures and infected at different cell densities and multiplicities of infection. The method was able to precisely assess the extent of infection of the insect cells from 60 h postinfection. In asynchronously infected Sf9 cell cultures, the two-step infection process (primary and secondary infection) was well-characterized using this technique. Finally, a reduced sensitivity to baculovirus infection was observed for cells infected at the end of the growth phase compared to the cells infected during exponential growth phase.  相似文献   

16.
Insect cells (Spodoptera frugiperda) have been cultured in a stationary bed reactor, packed with a fibrous polyester carrier. When the bioreactor was perfused with serum-supplemented medium, a cell density of 6 x 10(6) cells ml-1 packed carrier was reached. Scanning electron microscopy investigations have shown that the insect cells grew along the three-dimensionally oriented fibers of the Fibra-cel carrier. After infection of the logarithmically growing cells with a recombinant baculovirus (Autographa californica) containing the gene coding for beta-galactosidase, the medium in the bioreactor was changed to serum-free medium. At day 13 postinfection (p.i.), a beta-galactosidase level of 320 microgram ml-1 and, at day 17 p.i., a virus titer of 2.1 x 10(8) TCID50 units ml-1 (day 17 p.i.) were reached. In another bioreactor, operated in a similar way but with serum-containing medium, a beta-galactosidase concentration of 360 microgram ml-1 and a virus titer of 2.3 x 10(8) TCID50 units ml-1 were obtained. These results indicate the potential use of this production system for the production of recombinant protein and baculovirus in insect cells.  相似文献   

17.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
A novel feeding strategy in fedbatch recombinant yeast fermentation was developed to achieve high plasmid stability and protein productivity for fermentation using low-cost rich (non-selective) media. In batch fermentations with a recombinant yeast, Saccharomyces cerevisiae, which carried the plasmid pSXR125 for the production of beta-galactosidase, it was found that the fraction of plasmid-carrying cells decreased during the exponential growth phase but increased during the stationary phase. This fraction increase in the stationary phase was attributed to the death rate difference between the plasmid-free and plasmid-carrying cells caused by glucose starvation in the stationary phase. Plasmid-free cells grew faster than plasmid-carrying cells when there were plenty of growth substrate, but they also lysed or died faster upon the depletion of the growth substrate. Thus, pulse additions of the growth substrate (glucose) at appropriate time intervals allowing for significant starvation period between two consecutive feedings during fedbatch fermentation should have positive effects on stabilizing plasmid and enhancing protein production. A selective medium was used to grow cells in the initial batch fermentation, which was then followed with pulse feeding of concentrated non-selective media in fedbatch fermentation. Both experimental data and model simulation show that the periodic glucose starvation feeding strategy can maintain a stable plasmid-carrying cell fraction and a stable specific productivity of the recombinant protein, even with a non-selective medium feed for a long operation period. On the contrary, without glucose starvation, the fraction of plasmid-carrying cells and the specific productivity continue to drop during the fedbatch fermentation, which would greatly reduce the product yield and limit the duration that the fermentation can be effectively operated. The new feeding strategy would allow the economic use of a rich, non-selective medium in high cell density recombinant fedbatch fermentation. This new feeding strategy can be easily implemented with a simple IBM-PC based control system, which monitors either glucose or cell concentration in the fermentation broth.  相似文献   

19.
Intrinsic factor was produced at levels of 1-2 mg per 1 (0.25 micrograms per 10(6) cells) by growth of recombinant baculovirus-infected Sf9 cells in spinner culture. The recombinant IF showed a binding affinity for cobalamin (2.6.10(-10) M) and for the intrinsic factor-cobalamin receptor (3.5.10(-10) M) nearly identical with native IF. Purification of the recombinant intrinsic factor could be accomplished by affinity chromatography, but final purification by gel chromatography (FPLC) was necessary to separate intrinsic factor from a 62 kDa protein secreted from uninfected Sf9 cells. This protein binds selectively to the cobalamin-Sepharose column, but demonstrates no cobalamin binding activity after elution. Microgram quantities of radiolabelled protein could be produced for metabolic and autoradiographic studies. The stability of intrinsic factor to pancreatic proteinases was nearly identical with human gastric intrinsic factor, both native and recombinant as produced in mammalian cells. Glycosylation of the intrinsic factor was demonstrated by lectin binding to the recombinant protein separated on SDS-PAGE, and by a shift in apparent molecular mass from 47 kDa to 43 kDa following treatment of Sf9 cells with tunicamycin. Most of the recombinant IF was produced by Sf9 cells in the first 48 h post infection.  相似文献   

20.
The baculovirus/insect cell system (Autographa californica multiple nuclear polyhedrosis virus/Spodoptera frugiperda Sf9 cells) was used to express the GPI-anchored human melanoma tumor antigen, melanotransferrin or p97. This system served to study the expression and productivity of recombinant GPI-anchored p97 by insect cells. The Sf9 cells expressed a cell surface GPI-anchored form of p97 as well as a soluble form of p97 that did not appear to be derived from the GPI-anchored form of p97. Both recombinant forms, although Endo H resistant, migrated slightly faster ( approximately 88 kDa) than the native p97 ( approximately 95-97 kDa). The insect GPI-anchored p97 was sensitive to PI-PLC, which exposed a detectable cross-reacting determinant. The Sf9 cell surface p97 expression was similar to that of human melanoma (SK-MEL-28) cells, whereas the Sf9 cell specific secretion rate was 10-fold higher. Also Sf9 cells retained considerably higher levels of p97 within the cell. The Sf9 cell surface expression of p97 varied with time after infection, with the maximum expression, which appeared independent of multiplicities of infection greater than 1, occurring at 48 h. After 48 h, levels of cell surface and secreted p97 fell whereas p97 retained within the cell increased, which possibly reflected the lytic nature of the expression system. The successful expression of GPI-anchored human p97 by the baculovirus/insect cell system not only provides a source of p97 for further research but also is the basis of an alternative method for the commercial production of GPI-anchored proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号