共查询到20条相似文献,搜索用时 15 毫秒
1.
A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism
下载免费PDF全文

Cellular polarity is a general feature of animal development. However, the mechanisms that establish and maintain polarity in a field of cells or even in the whole embryo remain elusive. Here we provide evidence that in the Caenorhabditis elegans embryo, the descendants of P1, the posterior blastomere of the 2-cell stage, constitute a polarising centre that orients the cell divisions of most of the embryo. This polarisation depends on a MOM-2/Wnt signal originating from the P1 descendants. Furthermore, we show that the MOM-2/Wnt signal is transduced from cell to cell by a relay mechanism. Our findings suggest how polarity is first established and then maintained in a field of cells. According to this model, the relay mechanism constantly orients the polarity of all cells towards the polarising centre, thus organising the whole embryo. This model may also apply to other systems such as Drosophila and vertebrates. 相似文献
2.
3.
B Jeansonne Q Lu D A Goodenough Y H Chen 《Cellular and molecular biology, including cyto-enzymology》2003,49(1):13-21
The claudin family is a set of integral membrane proteins found at cell-cell interactions in tight junctions. To identify proteins that interact with claudin-8, we used the yeast two-hybrid system to search for binding partners. Using the C-terminal 37 amino acids of claudin-8 as bait, we screened a human kidney cDNA library and identified multi-PDZ domain protein 1 (MUPP1) as a claudin-8 binding protein. MUPP1 contains 13 PDZ domains and binds to claudin-8 though its PDZ9 domain. When MDCK cells were transfected with epitope-tagged claudin-8 or MUPP1, both molecules were concentrated at cell-cell junctions. The interaction of claudin-8 and MUPP1 in vivo was confirmed by co-immunolocalization and co-immunoprecipitation in MDCK cells. Expression of claudin-8-myc increased transepithelial electrical resistance (TER) and reduced paracellular flux using FITC-dextran as a tracer. Over-expression of FLAG-MUPP1 in MDCK cells also reduced the epithelial paracelhular conductance. Our results indicate that claudin-8 and MUPP1 interact in tight junctions of epithelial cells and are involved in the tight junction barrier function. 相似文献
4.
The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2 总被引:5,自引:0,他引:5
Barritt DS Pearn MT Zisch AH Lee SS Javier RT Pasquale EB Stallcup WB 《Journal of cellular biochemistry》2000,79(2):213-224
A yeast two-hybrid screen was employed to identify ligands for the cytoplasmic domain of the NG2 chondroitin sulfate proteoglycan. Two overlapping cDNA clones selected in the screen are identical in sequence to a DNA segment coding for the most amino-terminal of the 13 PDZ domains found in the multi-PDZ-protein MUPP1. Antibodies made against recombinant polypeptides representing these two clones (NIP-2 and NIP-7) are reactive with the same 250-kDa molecule recognized by anti-MUPP1 antibodies, confirming the presence of the NIP-2 and NIP-7 sequences in the MUPP1 protein. NIP-2 and NIP-7 GST fusion proteins effectively recognize NG2 in pull-down assays, demonstrating the ability of these polypeptide segments to interact with the intact proteoglycan. The fusion proteins fail to bind NG2 missing the C-terminal half of the cytoplasmic domain, emphasizing the role of the NG2 C-terminus in the interaction with MUPP1. The existence of an NG2/MUPP1 interaction in situ is demonstrated by the ability of NG2 antibodies to co-immunoprecipitate both NG2 and MUPP1 from detergent extracts of cells expressing the two molecules. MUPP1 may serve as a multivalent scaffold that provides a means of linking NG2 with key structural and/or signaling components in the cytoplasm. 相似文献
5.
Emeline Assémat Emmanuelle Crost Marion Ponserre Jan Wijnholds Andre Le Bivic Dominique Massey-Harroche 《Experimental cell research》2013
MUPP-1 (multi-PDZ domain protein-1) and PATJ (PALS-1-associated tight junction protein) proteins are closely related scaffold proteins and bind to many common interactors including PALS-1 (protein associated with Lin seven) a member of the Crumbs complex. Our goal is to understand how MUPP-1 and PATJ and their interaction with PALS-1 are regulated in the same cells. We have shown that in MCF10A cells there are at least two different and co-existing complexes, PALS-1/MUPP-1 and PALS-1/PATJ. Surprisingly, MUPP-1 levels inversely correlated with PATJ protein levels by acting on the stabilization of the PATJ/PALS-1 complex. Upon MUPP-1 depletion, the increased amounts of PATJ are in part localized at the migrating front of MCF10A cells and are able to recruit more PAR3 (partition defective 3). All together these data indicate that a precise balance between MUPP-1 and PATJ is achieved in epithelial cells by regulating their association with PALS-1. 相似文献
6.
The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost 总被引:2,自引:0,他引:2
Roh MH Makarova O Liu CJ Shin K Lee S Laurinec S Goyal M Wiggins R Margolis B 《The Journal of cell biology》2002,156(1):161-172
Chemokines are small cytokines primarily known for their roles in inflammation. More recently, however, they have been implicated in processes involved in development of the granulation tissue of wounds, but little is known about their functions during this process. Fibroblasts play key roles in this phase of healing: some fibroblasts differentiate into myofibroblasts, alpha-smooth muscle actin (SMA)-producing cells that are important in wound closure and contraction. Here we show that the CXC chemokine chicken chemotactic and angiogenic factor (cCAF) stimulates fibroblasts to produce high levels of alpha-SMA and to contract collagen gels more effectively than do normal fibroblasts, both characteristic properties of myofibroblasts. Specific inhibition of alpha-SMA expression resulted in abrogation of cCAF-induced contraction. Furthermore, application of cCAF to wounds in vivo increases the number of myofibroblasts present in the granulation tissue and accelerates wound closure and contraction. We also show that these effects in culture and in vivo can be achieved by a peptide containing the NH2-terminal 15 amino acids of the cCAF protein and that inhibition of alpha-SMA expression also results in inhibition of N-peptide-induced collagen gel contraction. We propose that chemokines are major contributors for the differentiation of fibroblasts into myofibroblasts during formation of the repair tissue. Because myofibroblasts are important in many pathological conditions, and because chemokines and their receptors are amenable to pharmacological manipulations, chemokine stimulation of myofibroblast differentiation may have implications for modulation of functions of these cells in vivo. 相似文献
7.
A novel gene, Xerl, has been found as a CNS-specific gene encoding a secretory protein. In order to clarify a function of Xerl, we first examined Xerl-expressing areas during early development. Comparison with XlSox-2-positive neural plate and ADAM13-positive neural crest showed that Xerl expression was limited within the neural plate area. Microinjection of Xerl mRNA into 2- or 4-cell stage embryos indicated that Xerl overexpression caused the regional expansion of XlSox-2- and NCAM-positive neural plate, which was concomitant with the outer shift of ADAM13-positive region. The Xerl injection resulted in incomplete neural closure because of the local overproduction of the neuroepithelium. In contrast, loss of function analysis of Xerl indicated that Xerl inhibition caused the ectopic differentiation of neural crest cells. In the conjugation experiment using chordin-injected animal caps, Xerl promoted chordin-induced XlSox-2 expression, whereas Xerl inhibition caused ADAM13expression even in the injection with a high dose of chordin. Animal cap assays also showed that Xerl expression was induced by chordin. In the functional analysis using truncated forms of Xerl, Xerl deltaL (lacking LNS domain) worked as a dominant negative form that induced the overproduction of neural crest cells. These results suggest that Xerl is involved in the boundary formation of the neural plate through exclusion of neural crest cell differentiation. 相似文献
8.
9.
Death domains (DD) and leucine rich repeats (LRR) are two different types of protein interaction motifs. Death domains are found predominantly in proteins involved in signaling and are involved in homo- and heteromultimerization. Leucine rich repeats are found in proteins with diverse cellular functions, like cell adhesion and cellular signaling, and mediate reversible protein-protein interactions. In this paper we report the cloning of a new human gene called LRDD (leucine repeat death domain containing protein). LRDD encodes a protein of 83 kDa with six LRRs at the N-terminus and a DD at the C-terminus. LRDD appears to be processed into two fragments of about 33 and 55 kDa, containing LRRs and DD respectively. Interestingly, LRDD is shown to interact with two other death domain containing proteins, FADD and MADD, presumably through death domain interactions. LRDD may represent a new type of adapter protein that could be involved in signaling or other cellular functions. 相似文献
10.
PDZ10 is the 10th of 13 PDZ domains found within MUPP1, a cytoplasmic scaffolding protein first identified as an endogenous binding partner of serotonin receptor type 2c (5HT2c). This association, as with those of several other interacting proteins that have subsequently been identified, is mediated through the C-terminal tail of the PDZ domain partner. Using isothermal titration calorimetry (ITC), we measured the thermodynamic binding parameters [changes in Gibbs free energy (DeltaG), enthalpy (DeltaH) and entropy (TDeltaS)] of the isolated PDZ10 domain for variable-length N-acetylated peptides from the 5HT2c serotonin receptor C-terminal sequence, as well as for octapeptides of eight other putative partner proteins of PDZ10 (5HT2a, hc-kit, hTapp1, mTapp2, TARP, NG2, claudin-1, and HPV-18 E6). In length dependence studies of the 5HT2c sequence, the maximal affinity of the peptides leveled off rapidly and further elongation did not significantly improve the dissociation constant (Kd) of 11 microM observed with the pentapeptide. Among the native partners of PDZ10, octapeptides derived from the hc-kit and 5HT2c proteins were the strongest binders, with Kd values of 5.2 and 8.5 microM, respectively. The heat capacity change (DeltaCp) for the 5HT2c octapeptide was determined to be -94 cal/mol, and a calculated estimate indicates burial of polar and apolar surface areas in equal measure upon ligand binding. Peptides with phosphoserine at either the P-1 or P-2 position experienced decreased affinity, which is in accord with the hypothesis that reversible phosphorylation is a possible mechanism for regulating PDZ domain-mediated interactions. Additionally, two conformationally constrained side chain-bridged cyclic peptide ligands were also designed, prepared, evaluated by ITC, and shown to bind PDZ10 primarily through a favorable change in entropy. 相似文献
11.
Brain serine racemase contains pyridoxal phosphate as a prosthetic group and is known to become activated by divalent cations such as Ca(2+) and Mg(2+), as well as by ATP and ADP. In vivo, brain serine racemase is also activated by a multi-PSD-95/discs large/ZO-1 (PDZ) domain glutamate receptor interacting protein (GRIP) that is usually coupled to the GluR2/3 subunits of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid Ca(2+) channel. In the present study, we analysed the mechanisms by which serine racemase becomes activated by GRIP, divalent cations and ATP. We show that binding of PDZ6 of GRIP to serine racemase does not result in increased d-serine production. However, full-length GRIP does augment significantly enzymatic activity. We expressed various GRIP shorter constructs to map down the regions within GRIP that are necessary for serine racemase activation. We observed that, whereas recombinant proteins containing PDZ4-PDZ5-PDZ6 are unable to activate serine racemase, other constructs containing PDZ4-PDZ5-PDZ6-GAP2-PDZ7 significantly augment its activity. Hence, activation of serine racemase by GRIP is not a direct consequence of the translocation towards the calcium channel but rather a likely conformational change induced by GRIP on serine racemase. On the other hand, the observed activation of serine racemase by divalent cations has been assumed to be a side-effect associated with ATP binding, which is known to form a complex with Mg(2+) ions. Because no mammalian serine racemase has yet been crystallized, we used molecular modelling based on yeast and bacterial homologs to demonstrate that the binding sites for Ca(2+), ATP and the PDZ6 domain of GRIP are spatially separated and modulate the enzyme through distinct mechanisms. 相似文献
12.
In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle. 相似文献
13.
A novel kinesin-like protein with a calmodulin-binding domain 总被引:4,自引:0,他引:4
W. Wang D. Takezawa S. B. Narasimhulu A. S. N. Reddy B. W. Poovaiah 《Plant molecular biology》1996,31(1):87-100
Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with 35S-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca2+-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCK1 is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca2+/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport. 相似文献
14.
Isolation and characterization of epinectin, a novel adhesion protein for epithelial cells
下载免费PDF全文

A 70,000-mol-wt protein was isolated from A431 carcinoma cell extracellular matrix that promotes cell substratum adhesion of these epidermoid tumor cells. Extracellular matrix was isolated by a modification of a procedure described by Hedman et al. (Hedman, K., M. Kurkinen, K. Alitalo, A. Vaheri, S. Johansson, and M. Hook, 1979 J. Cell Biol., 81:83-91) and Yamada and Weston (Yamada, K., and J. A. Weston, 1974, Proc. Natl. Acad. Sci. USA, 71:3492-3496). Cells were solubilized with 0.5% deoxycholate, 10 mM Tris, 0.9% NaCl, and 1 mM phenylmethylsulfonyl fluoride, pH 8.0. The residual matrix was then removed from the plates with 6 M urea and 1 mM phenylmethylsulfonyl fluoride and phosphate-buffered saline. SDS PAGE gels of the 6 M urea extract showed one major band at 70,000-mol-wt by Coomassie Blue staining. A 70,000-mol-wt isotopically-labeled band could also be extracted from the matrix of cells incubated with [35S]methionine. Because of the presence of this protein on squamous-derived epithelial cells we have called the 70,000-mol-wt molecule epinectin. Indirect immunofluorescence with polyclonal rabbit antibodies against epinectin stained A431 cells pericellularly in dense punctate accumulations and along the plasma membrane. Enzyme-linked immunoassays and gel-transfer immunolocalization studies showed that the extract did not cross-react with antibodies to fibronectin, laminin, serum-spreading factor, epibolin, or keratin. Additionally, antibodies to epinectin did not cross-react with these proteins. Further studies showed that epinectin does not bind to gelatin. Cell-adhesion assay, using radiolabeled A431 carcinoma cells on various adhesion-promoting substrates, showed that epinectin has similar adhesion-promoting capacity as serum-spreading factor, was somewhat less active than fibronectin, but more effective than laminin or epibolin. Epinectin appears to be a unique protein isolated from epidermoid tumor cells that is distinct from other known adhesion proteins. 相似文献
15.
Pathologists have long recognized that tumour formation in epithelia leads to disruption of normal epithelial cell polarity. Despite this, few studies have taken advantage of new information on the biogenesis of cell polarity to analyse the process of epithelial oncogenesis. Recent studies of epithelial cell lines now indicate that the pattern of breakdown of polarity during oncogenesis may reflect the way in which normal epithelial cells achieve polarity. These results suggest not only a novel way to study the development of polarity in vitro, but also new ideas for the early detection of cancer. 相似文献
16.
CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues 总被引:3,自引:0,他引:3
Kraus DM Elliott GS Chute H Horan T Pfenninger KH Sanford SD Foster S Scully S Welcher AA Holers VM 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(7):4419-4430
In this study, we describe the identification and in vitro functional activity of a novel multiple domain complement regulatory protein discovered based on its homology to short consensus repeat (SCR)-containing proteins of the regulators of complement activation (RCA) gene family. The rat cDNA encodes a predicted 388-kDa protein consisting of 14 N-terminal CUB domains that are separated from each other by a SCR followed by 15 tandem SCR domains, a transmembrane domain, and a short cytoplasmic tail. This protein is the homolog of the human protein of unknown function called the CUB and sushi multiple domains 1 (CSMD1) protein. A cloning strategy that incorporates the two C-terminal CUB-SCR domains and 12 of the tandem SCR repeats was used to produce a soluble rat CSMD1 protein. This protein blocked classical complement pathway activation in a comparable fashion with rat Crry but did not block alternative pathway activation. Analysis of CSMD1 mRNA expression by in situ hybridization and immunolabeling of neurons indicates that the primary sites of synthesis are the developing CNS and epithelial tissues. Of particular significance is the enrichment of CSMD1 in the nerve growth cone, the amoeboid-leading edge of the growing neuron. These results suggest that CSMD1 may be an important regulator of complement activation and inflammation in the developing CNS, and that it may also play a role in the context of growth cone function. 相似文献
17.
Mori T Wada T Suzuki T Kubota Y Inagaki N 《The Journal of biological chemistry》2007,282(27):19884-19893
Although neuronal functions depend on their robust polarity, the mechanisms that ensure generation and maintenance of only a single axon remain poorly understood. Using highly sensitive two-dimensional electrophoresis-based proteomics, we identified here a novel protein, single axon-related (singar)1/KIAA0871/RPIPx/RUFY3, which contains a RUN domain and is predominantly expressed in the brain. Singar1 expression became up-regulated during polarization of cultured hippocampal neurons and remained at high levels thereafter. Singar1 was diffusely localized in hippocampal neurons and moderately accumulated in growth cones of minor processes and axons. Overexpression of singar1 did not affect normal neuronal polarization but suppressed the formation of surplus axons induced by excess levels of shootin1, a recently identified protein located upstream of phosphoinositide-3-kinase and involved in neuronal polarization. Conversely, reduction of the expression of singar1 and its splicing variant singar2 by RNA interference led to an increase in the population of neurons bearing surplus axons, in a phosphoinositide-3-kinase-dependent manner. Overexpression of singar2 did not suppress the formation of surplus axons induced by shootin1. We propose that singar1 ensures the robustness of neuronal polarity by suppressing formation of surplus axons. 相似文献
18.
Background
Members of the p24 (p24/gp25L/emp24/Erp) family of proteins have been shown to be critical components of the coated vesicles that are involved in the transportation of cargo molecules from the endoplasmic reticulum to the Golgi complex. The p24 proteins form hetero-oligomeric complexes and are believed to function as receptors for specific secretory cargo. 相似文献19.
MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans 总被引:3,自引:0,他引:3
下载免费PDF全文

The Aspergillus nidulans proteome possesses a single formin, SepA, which is required for actin ring formation at septation sites and also plays a role in polarized morphogenesis. Previous observations imply that complex regulatory mechanisms control the function of SepA and ensure its correct localization within hyphal tip cells. To characterize these mechanisms, we undertook a screen for mutations that enhance sepA defects. Of the mutants recovered, mesA1 causes the most dramatic defect in polarity establishment when SepA function is compromised. In a wild-type background, mesA1 mutants undergo aberrant hyphal morphogenesis, whereas septum formation remains unaffected. Molecular characterization revealed that MesA is a novel fungal protein that contains predicted transmembrane domains and localizes to hyphal tips. We show that MesA promotes the localized assembly of actin cables at polarization sites by facilitating the stable recruitment of SepA. We also provide evidence that MesA may regulate the formation or distribution of sterol-rich membrane domains. Our results suggest that these domains may be part of novel mechanism that directs SepA to hyphal tips. 相似文献