首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
《Aquatic Botany》1986,23(4):309-320
Direct evidence of heterotrophic dinitrogen fixation associated with the emergent aquatic angiosperm, Typha latifolia L., was obtained through the exposure of actively growing plants to 15N2 gas for 7 days in a gas-tight exposure vessel. Highest enrichments of 15N were found in roots/rhizomes and leaf bases. Slight enrichments were also found in the leaves due to translocation from the roots, rhizomes and leaf bases. Total fixed 15N values were 71.8 μg for the plant and 49.1 μg for the soil.Plants growing in silica sand, which received a nutrient solution containing combined nitrogen, exhibited higher enrichments and fixed 86% more 15N after exposure to 15N2 gas than plants which received a nutrient solution lacking combined nitrogen. It is hypothesized that the concentration of combined nitrogen added was insufficient to repress nitrogen fixation and resulted in an increase in nitrogen fixation by associated microorganisms.Propane was used to trace the loss and movement of gases from the 15N2 vessel and between the upper leaf chamber and the lower root chamber. Gas was rapidly exchanged between the upper and lower chambers through the leaves and roots of T. latifolia. Further investigations showed that propane moved at a rate of 1223 μmol day−1 from the leaves to the roots and 2652 μmol day−1 from the roots to the leaves. These data demonstrated that gases diffuse rapidly through the plant body of T. latifolia.  相似文献   

2.
In monocropped cereal systems, annual N inputs from non-fertilizer sources may be more than 30 kg ha-1. We examined the possibility that these inputs are due to biological N2 fixation (BNF) associated with roots or decomposing residues. Wheat was grown under greenhouse conditions in pots (34 cm long by 10 cm diameter) containing soil from a plot cropped to spring wheat since 1911 without fertilization. The roots and soil were sealed from the atmosphere and exposed to a15N2-enriched atmosphere for three to four weeks during vegetative, reproductive or post-reproductive stages. This technique permitted detection of as little as 1 μg fixed N plant-1 in plant material and 40 μg fixed N plant-1 in soil. No fixation of15N2 occurred during either of the first two labelling periods. In the final labelling period, straw returned to the soil was significantly enriched in15N, especially in a pot with a higher soil moisture content. Total BNF in this pot was 13 μg N plant-1, or about 30 g N ha-1. In a separate experiment with soil from the same plot, we detected BNF only when soil was amended with glucose at a high soil moisture content. Measured associative BNF was insufficient to account for observed N gains under field conditions. Lethbridge Research Centre contribution no. 3879488. Lethbridge Research Centre contribution no. 3879488.  相似文献   

3.
To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with 13CO2 and 15NO3 15NH4. The specific enrichments of 15N and 13C were higher in ectomycorrhizas (EMs) than in any other tissue. The enrichments of 13C and 15N were also higher in the fine-root segments directly connected with the EM (mainly second-order roots) than that in bulk fine or coarse roots. A strict, positive correlation was found between the specific 15N enrichment in EM and the attached second-order roots. This finding indicates that strong N accumulators provide more N to their host than low N accumulators. A significant correlation was also found for the specific 13C enrichment in EM and the attached second-order roots. However, the specific enrichments for 15N and 13C in EM were unrelated showing that under long-term conditions, C and N exchange between host and EMs are uncoupled. These findings suggest that EM-mediated N flux to the plant is not the main control on carbon flux to the fungus, probably because EMs provide many different services to their hosts in addition to N provision in their natural assemblages.  相似文献   

4.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

5.
Two experiments were carried out from 1981 to 1983 in Vertisol field at ICRISAT Center, Patancheru, India to measure N2-fixation of pigeonpea [Cajanus cajan (L.) Millsp.] using the15N isotope dilution technique. One experiment examined the effect of control of a nodule-eating insect on fixation while another in vestigated the effect of intercroping with cereals on fixation and the residual effect of pigeonpea on a succeeding cereal crop. Although both experiments indicated that at least 88% of the N in pigeonpea was fixed from the atmosphere, one result is considered fortuitous in view of the differential rates of growth of the legume and the control, sorghum [Sorghum bicolor (L.) Moench]. The difference method of calculation in dieated negative fixation and the results emphasized the problem of finding a suitable nonfixing control. In a second experiment, when all plants were confined to a known volume of soil to which15N fertilizer was added in the field, these problems were overcome, and isotope dilution and difference methods gave similar results of N2-fixation of about 90%. In intercropped pigeonpea 96% of the total N was derived from the atmosphere. This estimate might be an artifact. There was no evidence of benefit from N fixed by pigeonpea to intercropped sorghum plants. Plant tissue15N enrichments of cereal crops grown after pigeonpea indicated that the cereal derived some N fixed by the previous pigeonpea. Thus residual benefits to cereals are not only an effect of ‘sparing’ of soil N.  相似文献   

6.
Two 15N labelling methods for assessing net rhizodeposition of nitrogen (N) in pea crop (Pisum sativum L.) were compared in the greenhouse and in the field: the cotton-wick (CW) and the split-root (SR) methods. Rhizodeposition is defined as the organic material lost from roots during their growth through the soil. CW is a method in which 15N urea was supplied to the plant in pulses via a wick threaded through the stem. In SR, the root system was divided between a hydroponic labelling compartment (LC) containing the labelling nutrient solution (1 or 5 mM 15NO315NH4) and a compartment filled with soil in which the amount of 15N rhizodeposition was assessed. The percentage of N derived from rhizodeposition (%Ndfr), was used to calculate the amount of N rhizodeposition which was obtained from the ratio of atom % 15N excess of the soil : atom % 15N excess of the roots. Above ground parts in the field accumulated markedly more dry matter and N than in the greenhouse, regardless of the labelling method. 15N enrichments of above ground parts were higher than those of roots recovered from the soil. Results indicated that amount of 15N applied to plants were lower in SR than in CW. Additionally, LC roots of SR tended to retain large amounts of 15N. As a consequence, atom % 15N excess of roots was less than 1% in SR, whereas most values varied from 1% to 4% in CW. However, relationships between enrichments of the soil and of the roots were different in SR and CW. It was not possible to compare the Ndfr:root-N ratio between the two methods, but the ratio of Ndfr:plant-N was found to be 10% higher in SR than in CW. Finally, relative to total plant-N, the total contribution of below ground parts to the N pool of the soil reached 22–25% at maturity for the two methods. From our experiments, we could not conclude that one method is better than the other for estimating either net rhizodeposition of N or the contribution of a pea plant to the soil N pool. However, CW is easier to adapt and monitor under field conditions than SR.  相似文献   

7.
Summary In a greenhouse study the influence of alternate flooded and nonflooded conditions on the N2-ase activity of rice rhizosphere soil was investigated by C2H2 reduction assay. The soil fraction attached to roots represent the rhizosphere soil. Soil submergence always accelerated N2-ase and this effect was more pronounced in planted system. Moreover, rice plant exhibited phase-dependent N2-ase with a maximum activity at 60 days after transplanting. The alternate flooded and nonflooded regimes resulted in alterations of the N2-ase activity. Thus, the N2-ase activity increased following a shift from nonflooded to flooded conditions, but the activity decreased when the flooded soil was returned to nonflooded condition by draining. However, the differential influence of the water regime on N2-ase was not marked in prolonged flooded-nonflooded cycles. Microbial analysis indicated the stimulation of different groups of free-living and associative N2-fixing microorganisms depending on the water regime.  相似文献   

8.
A pot experiment was conducted in a 14C-labelled atmosphere to study the influence of living plants on organic-N mineralization. The soil organic matter had been labelled, by means of a 200-days incubation, with 15N. The influence of the carbon input from the roots on the formation of microbial biomass was evaluated by using two different light intensities (I). Mineralization of 15N-labelled soil N was examined by following its fate in both the soil biomass and the plants. Less dry matter accumulated in shoots and roots at the lower light intensity. Furthermore, in all the plant-soil compartments examined, with the exception of rhizosphere respiration, the proportion of net assimilated 14C was lower in the low-I treatment than in the high-I treatment. The lower rates of 14C and 15N incorporation into the soil biomass were associated with less root-derived 14C. During the chamber period (14CO2-atmosphere), mineralized amounts of 15N (measured as plant uptake of 15N) were small and represented about 6.8 to 7.8% of the initial amount of organic 15N in the soil. Amounts of unlabelled N found in the plants, as a percentage of total soil N, were 2.5 to 3.3%. The low availability of labelled N to microorganisms was the result of its stabilization during the 210 days of soil incubation. Differences in carbon supply resulted in different rates of N mineralization which is consistent with the hypothesis that roots induce N mineralization. N mineralization was higher in the high-I treatment. On the other hand, the rate of mineralization of unlabelled stable soil N was lower than labelled soil 15N which was stabilized. The amounts of 15N mineralized in planted soil during the chamber period (43 days) which were comparable with those mineralized in unplanted soil incubated for 210 days, also suggested that living plants increased the turnover rate of soil organic matter.  相似文献   

9.
A 15N labelling technique was used to measure N2O and N2 emissions from an undisturbed grassland soil treated with cow urine and held at 30 cm water tension and 20°C in a laboratory. Large emissions of dinitrogen were detected immediately following urine application to pasture. These coincided with a rapid and large increase in soil water-soluble carbon levels, some of this increase being attributed to solubilization of soil organic matter by high pH and ammonia concentrations. Emissions of nitrous oxide generally increased with time in contrast to dinitrogen fluxes which decreased as time progressed. Estimated losses of N2O and N2 over a 30 day period were between 1 to 5% and 30 to 65% of the urine N applied plus N mineralized from soil organic matter, respectively. Most of the N2 and N2O originated from denitrification with nitrification-denitrification being of minor significance as a source of N2O. Comparisons of the 15N enrichments in the soil mineral N pools and the evolved N2O suggested that much of the N2O was produced in the 5–8 cm zone of the soil. It is concluded that established grassland soils contain large amounts of readily-oxidizable organic carbon which may be used by soil denitrifying organisms when nitrate is non-limiting and soil redox potential is lowered due to high rates of biological activity and high soil moisture contents. ei]{gnR}{fnMerckx}  相似文献   

10.
Douglas  L. A.  Weaver  R. W. 《Plant and Soil》1993,(1):353-354
If the quality and quantity of yields from cowpea (Vigna unguiculata [L.] Walp.) are to be maximised, a complete understanding of the N nutrition of the plant must be achieved. The N requirement for developing pods of this species may come from mobilization of N in vegetative tissue, biological N fixation and uptake of N from soil. In this study, the fate of a pulse of fixed 15N2 or of 15NO3-given to different cowpea plants during pod development was determined. The plants were grown in vermiculite in plastic pots that were able to be sealed with silicone adhesive and equipped with a rubber septum so that 15N2 gas could be injected into the air space above the vermiculite, and gas losses would be eliminated. Nineteen days after injection of 15N2 the pods, leaves, nodules and roots contained 65%, 15%, 9%, and 4%, respectively of the quantity of 15N2 fixed. When 15NO3-15N was taken up by other plants during this period, these plant parts contained 40%, 26%, 3% and 19%, respectively, of the total plant 15N. The percentage 15N in roots was greater, and that of 15N in nodules was lower, when 15NO3-15N was applied than when 15N2 was utilised by plants. These results indicate that, while a high percentage of fixed-N or NO3-N given to cowpea plants moved to the developing pods, other sinks were competing for this newly-aquired N.  相似文献   

11.
Abstract A new technique has been devised for the direct estimation of the contribution of N2-fixation to the total nitrogen of a legume crop. Sealed lysimeters and ancillary equipment are described by which it is possible to enclose in a gas-tight system the roots of some of the plants within the crop, together with their associated core of soil. The normal soil atmosphere can then be replaced by one containing 15N2, thus allowing, from the 15N content of the resulting plants direct calculation of the N2-fixation. Regular monitoring is necessary to ensure that soil O2, CO2 and moisture contents are maintained at normal field levels. The results indicate that the technique is capable of achieving its objectives and, provided the seedlings establish well initially, the resultant plants fully match the field average at final harvest. It has been possible to maintain the labelling of the soil atmosphere sufficiently constant to ensure that reliable and highly reproducible estimates of N2-fixation are obtained. Using Pisum sativum cv. Meteor at densities of 160 plants m?2, fixation accounted for about 90% of the total nitrogen uptake. The limitations and merits of the method are compared with those of the 15N-fertilizer dilution method.  相似文献   

12.
Summary The 15N/14N ratios of plant and soil samples from Northern California ecosystems were determined by mass spectrometry. The 15N abundance of 176 plant foliar samples averaged 0.0008 atom % 15N excess relative to atmospheric N2 and ranged from-0.0028 to 0.0064 atom % 15N excess relative to atmospheric N2. Foliage from reported N2-fixing species had significantly lower mean 15N abundance (relative to atmospheric N2 and total soil N) and significantly higher N concentration (% N dry wt.) than did presumed non-N2-fixing plants growing on the same sites. The mean difference between N2-fixing species and other plants was 0.0007 atom % 15N. N2-fixing species had lower 15N abundance than the other plants on most sites examined despite large differences between sites in vegetation, soil, and climate. The mean 15N abundance of N2-fixing plants varied little between sites and was close to that of atmospheric N2. The 15N abundance of presumed non-N2-fixing species was highest at coastal sites and may reflect an input of marine spray N having relatively high 15N abundance. The 15N abundance of N2-fixing species was not related to growth form but was for other plants. Annual herbaceous plants had highest 15N abundance followed in decreasing order by perennial herbs, shrubs, and trees. Several terrestrial ferns (Pteridaceae) had 15N abundances comparable to N2-fixing legumes suggesting N2-fixation by these ferns. On sites where the 15N abundance of soil N differs from that of the atmosphere, N2-fixing plants can be identified by the natural 15N abundance of their foliage. This approach can be useful in detecting and perhaps measuring N2-fixation on sites where direct recovery of nodules is not possible.  相似文献   

13.
In annual crops, the partitioning of photosynthates to support root growth, respiration and rhizodeposition should be greater during early development than in later reproductive stages due to source/sink relationships in the plant. Therefore, seasonal fluctuations in carbon dioxide (CO2) and nitrous oxide (N2O) production from roots and root-associated soil may be related to resource partitioning by the crop. Greenhouse studies used 13C and 15N stable isotopes to evaluate the carbon (C) partitioning and nitrogen (N) uptake by corn and soybean. We also measured the CO2 and N2O production from planted pots as affected by crop phenology and N fertilization. Specific root-derived respiration was related to the 13C allocated to roots and was greatest during early vegetative growth. Root-derived respiration and rhizodeposition were greater for corn than soybean. The 15N uptake by corn increased between vegetative growth, tasseling and milk stages, but the 15N content in soybean was not affected by phenology. A peak in N2O production was observed with corn at the milk stage, suggesting that the corn rhizosphere supported microbial communities that produced N2O. Most of the 15N-NO3 applied to soybean was not taken up by the plant and negative N2O production during vegetative growth and floral initiation stages suggests that soybean roots supported the reduction of N2O to dinitrogen (N2). We conclude that crop phenology and soil N availability exert important controls on rhizosphere processes, leading to temporal variation in CO2 and N2O production.  相似文献   

14.
Summary Five crops of oats were grown over a 14-month period on a Chester silt loam soil fertilized with N15-labelled (NH4)2SO4. All plant material from the first four crops was returned to the soil. Following a fifth crop, oat tops and roots were harvested, and the soil was subjected to repeated extractions by autoclaving in 0.01M CaCl2. The distribution of N15 and of indigenous soil N among chemical fractions of the extracts, and in the acid-soluble and acid-soluble and acid-insoluble portions of the soil residues following 0.01M CaCl2 extraction, was remarkably similar. Since appreciable equilibrations between added N15 and the more resistant forms of soil organic N is unlikely, it is postulated that fertilizer N became incorporated in newly-formed complexes, similar to those already present in the soil. This view is in harmony with the finding that percentage removals of total and N15-labelled N remained almost the same, even with recovery of approximately 55 per cent of the amounts originally present. N mineralization capacity of the soil was reduced appreciably as a result of extraction.  相似文献   

15.
This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.Measuring acetylene reducing activity (ARA) is still the most popular method for assessing BNF in rice fields. Recent studies confirm that ARA measurements present a number of problems that may render quantitative extrapolations questionable. On the other hand, few comparative measures show ARA's potential as a quantitative estimate. Methods for measuring photodependent and associative ARA in field studies have been standardized, and major progress has been made in sampling procedures. Standardized ARA measurements have shown significant differences in associative N2 fixation among rice varieties.The 15N dilution method is suitable for measuring the percentage of N derived from the atmosphere (% Ndfa) in legumes and rice. In particular, the 15N dilution technique, using available soil N as control, appears to be a promising method for screening rice varieties for ability to utilize biologically fixed N. Attempts to adapt the 15N dilution method to aquatic N2 fixers (Azolla and blue-green algae [BGA]) encountered difficulties due to the rapid change in 15N enrichment of the water.Differences in natural 15N abundance have been used to show differences among plant organs and species or varieties in rice and Azolla, and to estimate Ndfa by Azolla, but the method appears to be semi-quantitative.Recent pot experiments using stabilized 15N-labelled soil or balances in pots covered with black cloth indicate a contribution of 10–30 kg N ha-1 crop-1 by heterotrophic BNF in flooded planted soil with no or little N fertilizer used.Associative BNF extrapolated from ARA and 15N incorporation range from 1 to 7 kg N ha-1 crop-1. Straw application increases heterotrophic and photodependent BNF. Pot experiments show N gains of 2–4 mg N g-1 straw added at 10 tons ha-1.N2 fixation by BGA has been almost exclusively estimated by ARA and biomass measurements. Estimates by ARA range from a few to 80 kg N ha-1 crop-1 (average 27 kg). Recent extensive measurements show extrapolated values of about 20 kg N ha-1 crop-1 in no-N plots, 8 kg in plots with broadcast urea, and 12 kg in plots with deep-placed urea.Most information on N2 fixed by Azolla and legume green manure comes from N accumulation measurements and determination of % Ndfa. Recent trials in an international network show standing crops of Azolla averaging 30–40 kg N ha-1 and the accumulation of 50–90 kg N ha-1 for two crops of Azolla grown before and after transplanting rice. Estimates of % Ndfa in Azolla by 15N dilution and delta 15N methods range from 51 to 99%. Assuming 50–80% Ndfa in legume green manures, one crop can provide 50–100 kg N ha-1 in 50 days. Few balance studies in microplots or pots report extrapolated N gains of 150–250 kg N ha-1 crop-1.N balances in long-term fertility experiments range from 19 to 98 kg N ha-1 crop-1 (average 50 kg N) in fields with no N fertilizer applied. The problems encountered with ARA and 15N methods have revived interest in N balance studies in pots. Balances are usually highest in flooded planted pots exposed to light and receiving no N fertilizer; extrapolated values range from 16 to 70 kg N ha-1 crop-1 (average 38 kg N). A compilation of balance experiments with rice soil shows an average balance of about 30 kg N ha-1 crop-1 in soils where no inorganic fertilizer N was applied.Biological N2 fixation by individual systems can be estimated more or less accurately, but total BNF in a rice field has not yet been estimated by measuring simultaneously the activities of the various components in situ. As a result, it is not clear if the activities of the different N2-fixing systems are independent or related. A method to estimate in situ the contribution of N2 fixed to rice nutrition is still not available. Dynamics of BNF during the crop cycle is known for indigenous agents but the pattern of fixed N availability to rice is known only for a few green manure crops.  相似文献   

16.
Production of nitrous oxide (N2O) was studied in one peaty and one sandy soil undergoing wetting and drying cycles. The background concentration of N2O in the soil was compared with the N2O produced during 4 hours of incubation with and without addition of acetylene. The concentration of N2O in the soil under flooded conditions was relatively stable, and net consumption of N2O was observed as often as net production. The reference area and drained soils showed somewhat different patterns compared to the flooded soils, which was probably an effect of intermediate soil water conditions. During flooding, the nitrous oxide made up less than 1% of total denitrification on 50% and 54% of the sampling occasions for the peaty and the sandy soil, respectively, and N2O/(N2O+N2)-ratios exceeded 0.2 on only 6% and 3% of the sampling occasions. Under drained conditions and in the reference areas, the ratios showed a more even frequency distribution. Grouping the nitrous oxide production data for different seasons and field conditions, we found few seasonal trends. At the sandy site, mean production of N2O was larger during the winter months. There were weak correlations between N2O production and floodwater nitrate concentration, and between N2O production and soil temperature. N2O production in the reference area varied between consumption and 4.6 kg N ha–1 month–1 and in flooded and drained soil between consumption and 2.6 kg N ha–1 month–1.  相似文献   

17.
Summary Six pasture grasses,Paspalum notatum cv batatais,P. notatum cv pensacola,Brachiaria radicans, B. ruziziensis, B. decumbens andB. humidicola, were grown in concrete cylinders (60 cm diameter) in the field for 31 months. The soil was amended with either a single addition of15N labelled organic matter or frequent small (2 kg N. ha–1) additions of15N enriched (NH4)2SO4. In the labelled fertilizer treatment soil analysis revealed that there was a very drastic change in15N enrichment in plant-available nitrogen (NO 3 +NH 4 + ) with depth. The different grass cultivars recovered different quantities of applied labelled N, and evidence was obtained to suggest that the roots exploited the soil to different depths thus obtaining different15N enrichments in soil derived N. This invalidated the application of the isotope dilution technique to estimate the contribution of nitrogen fixation to the grass cultivars in this treatment. In the labelled organic matter treatment the15N label in the plant-available N declined at a decreasing rate during the experiment until in the last 12 months the decrease was only from 0.274 to 0.222 atom % excess. There was little change in15N enrichment of available N with depth, hence it was concluded that although the grasses recovered different quantities of labelled N, they all obtained virtually the same15N enrichment in soil derived N. Data from the final harvests of this treatment indicated thatB. humidicola andB. decumbens obtained 30 and 40% respectively of their nitrogen from N2 fixation amounting to an input of 30 and 45 kg N.ha–1 year–1 respectively.  相似文献   

18.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   

19.
Rhizodeposition has been proposed as one mechanism for the accumulation of significant amounts of N in soil during legume growth. The objective of this experiment was to directly quantify losses of symbiotically fixed N from living alfalfa (Medicago sativa L.) roots to the rhizosphere. We used 15N-labeled N2 gas to tag recently fixed N in three alfalfa lines [cv. Saranac, Ineffective Saranac (an ineffectively nodulated line), and an unnamed line in early stages of selection for apparent N excretion] growing in 1-m long polyvinylchloride drainage lysimeters in loamy sand soil in a greenhouse. Plants were in the late vegetative to flowering growth stage during the 2-day labelling period. We determined the fate of this fixed N in various plant organs and soil after a short equilibration period (2 to 4 days) and after one regrowth period (35 to 37 days). Extrapolated N2 fixation rates (46 to 77g plant–1 h–1) were similar to rates others have measured in the field. Although there was significant accretion of total N in rhizosphere compared to bulk soil, less than 1% was derived from newly fixed N and there were no differences between the excreting line and Saranac. Loss of N in percolate water was small. These results provide the first direct evidence that little net loss of symbiotically-fixed N occurs from living alfalfa roots into surrounding soil. In addition, these results confirm our earlier findings, which depended on indirect 15N labelling techniques. Net N accumulation in soil during alfalfa growth is likely due to other processes, such as decomposition of roots, nodules, and above ground litter, rather than to N excretion from living roots and nodules.  相似文献   

20.
Fires may greatly alter the N budget of a plant community. During fire nitrogen is lost to the atmosphere. Although high light availability after fire promotes N2-fixation, the presumably high soil N availability could limit N2-fixation activity. The latter limitation might be particularly acute in legume seedlings compared with resprouts, which have immediate access to belowground stored carbon. We wished to learn whether early post-fire conditions were conducive to N2-fixation in leguminous seedlings and resprouts in two types of grassland and in a shrubland and whether seedlings and resprouts incurred different amounts of N2-fixation after fire. We set 18 experimental fires in early autumn on 6 plots, subsequently labelling 6 subplots (2 × 2 m2) in each community with 15NH4+-N (99 atom % excess). For 9 post-fire months we measured net N mineralisation in the top 5 cm of soil and we calculated the fraction of legume N derived from the atmosphere (%Ndfa) in seedlings and resprouts. We used two independent estimates of the amounts of N derived from non-atmospheric sources in potentially N2-fixing plants: mean soil pool abundance and the 15N-enrichment of non-legumes. Despite substantial soil net N mineralisation in all burned community types (about 2.6 g Nm−2 during the first nine months after fire), the %Ndfa of various legume species was 52–99%. Legumes from both grasslands showed slightly higher N2-fixation values than shrubland legumes. As grassland legumes grew in more belowground dense communities than shrubland legumes, we suggest that higher competition for soil resources in well established grass-resprouting communities may enhance the rate of N2-fixation after fire. In contrast to our hypothesis, legume seedlings and resprouts from the three plant communities studied, had similar %Ndfa and apparently acquired most of their N from the atmosphere rather than from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号