首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

2.
Using 86Rb+ as a marker for K+ permeability, we find that extracellular Ca-EGTA influences the rate of 86Rb+ efflux from erythrocyte ghosts preloaded with 86Rb+ and "buffered" Ca2+. At an internal free Ca2+, where the rate of 86Rb+ efflux is minimal and uninfluenced by either external EGTA or external Ca2+, external Ca-EGTA at 0.2-0.5 mM can raise the flux rate to as high as can be attained by raising internal Ca2+, in the presence of an excess externally either of Ca2+ or of EGTA. Higher concentrations of Ca-EGTA (up to 1-2 mM) diminish the flux rate. External Ca-EDTA or Mg-EDTA can substitute for Ca-EGTA in enhancing and suppressing flux rate. The peak rate is insensitive to external free Ca2+ but depends on internal Ca2+; internal Mg-EDTA does not substitute for internal Ca-EGTA. Thus, the erythrocyte membrane is asymmetric with respect to its interaction with Ca2+ and Ca-EGTA. Also, 22Na+ does not substitute for 86Rb+. The peak rate of 86Rb+ flux produced by external Ca-EGTA is diminished by chlorpromazine (0.1 mM) and augmented by 1-propranolol (25 microM), in the same way as the rate produced by increasing internal Ca2+. The results suggest that external Ca-EGTA enhances the affinity of internal Ca2+ for its receptor(s) which operate the K+-gate at the inner surface of the membrane. At external concentrations of Ca-EGTA above 1-2 mM, 86Rb+ flux rate again rises with increase of Ca-EGTA. This phenomenon does not depend upon internal Ca2+, is not affected by chlorpromazine or by 1-propranolol, and is associated with an enhanced permeability to 22Na+, inulin, and haemoglobin.  相似文献   

3.
Palytoxin (about 1 pM) increases the permeability of human erythrocytes. We now report its radiolabeling with 125I, followed by affinity purification on porcine kidney membranes. The resulting ligand binds fast and reversibly to intact erythrocytes. The Kd from velocity and equilibrium measurements is 2 X 10(-11) M, and the number of binding sites about 200 per cell. Binding is promoted by divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) and by borate. It is inhibited by K+ (IC50 2 mM), ouabain (IC50 3 X 10(-9) M) and ouabagenin (IC50 6 X 10(-6) M). Conversely, [3H]ouabain is displaced by the substances and concentrations mentioned, and also by palytoxin (Ki 3 X 10(-11) M). Dog erythrocytes, which are known to possess a very low (Na+ + K+)-ATPase activity, are resistant to and lack specific binding sites for palytoxin. Binding of 125I-palytoxin, like that of [3H]ouabain, depends on the state of (Na+ + K+)-ATPase. ATP depletion decreases binding of both ligands to erythrocytes. Binding of 125I-palytoxin and [3H]ouabain to red cell stroma is partially restored by ATP. In contrast to [3H]ouabain, binding of 125I-palytoxin to red cell stroma is not promoted by Mg2+ and Pi. The data show that (a) all known promoters and inhibitors of palytoxin action on human red cells do so by enhancing or decreasing its binding, (b) (Na+ + K+)-ATPase serves as a receptor for palytoxin, and (c) the antagonism by ouabain is competitive at the receptor level. They support our previous hypothesis that palytoxin increases human erythrocyte permeability by formation of pores through (Na+ + K+)-ATPase or its close vicinity.  相似文献   

4.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

5.
The passive Rb+ (K+) efflux from erythrocytes of seven mammalian species was investigated in solutions of physiological and low ionic strength. Furthermore the fluidity of the erythrocyte membrane in the same solutions was estimated by measuring the ESR order parameter. The rate constant of Rb+ (K+) efflux in solution of high ionic strength could be correlated with the order parameter obtained and with the mean number of double bonds to the membrane phospholipid fatty acids. The same relationships could be observed for the low ionic strength solutions if the values for human erythrocytes were excluded. The appearance of Na+, K+, Cl- cotransport to a significant extent, only in human erythrocytes, was supposed to be the reason for this different behaviour of human red blood cells. It was demonstrated that the strong increase of the Rb+ (K+) efflux rate constant for human erythrocytes in low ionic strength solution is not due to Ca2+, as quinine treatment and replacement of all external potassium, both inhibiting the Ca2(+)-induced K+ efflux, did not abolish the increase of (Rb+) K+ efflux in solutions of low ionic strength.  相似文献   

6.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

7.
Muscarinic stimulation of pancreatic B-cells markedly amplifies insulin secretion through complex mechanisms which involve changes in membrane potential and ionic fluxes. In this study, normal mouse islets were used to evaluate the role of Cl- ions in these effects of acetylcholine (ACh). Whatever the concentration of glucose, the rate of 36Cl- efflux from islet cells was unaffected by ACh. Replacement of Cl- by impermeant isethionate in a medium containing 15 mM glucose did not affect, or only slightly decreased, the ability of ACh to depolarize the B-cell membrane and increase electrical activity, to accelerate 45Ca2+ and 86Rb+ efflux from islet cells, and to amplify insulin release. In the absence of extracellular Ca2+, a high concentration of ACh (100 microM) mobilized intracellular Ca2+ and caused a transient release of insulin and a sustained acceleration of 86Rb+ efflux. None of these effects was affected by Cl- omission or by addition of furosemide, a blocker of the Na+, K+, 2Cl- cotransport. Isethionate substitution for Cl- in a medium containing a nonstimulatory concentration of glucose (3 mM) barely reduced the depolarization of B-cells by ACh, but inhibited the concomitant increase in 86Rb+ efflux. We have no explanation for the latter effect that was not mimicked by furosemide. In conclusion, ACh stimulation of pancreatic B-cells, unlike that of exocrine acinar cells, is largely independent of Cl- and is insensitive to furosemide. The acceleration of ionic fluxes produced by ACh does not involve the Na+, K+, 2Cl- cotransport system.  相似文献   

8.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

9.
The mechanisms by which 86Rb+ (used as a tracer for K+) enters human nonpigmented ciliary epithelial cells were investigated. Ouabain-inhibitable bumetanide-insensitive 86Rb+ transport accounted for approximately 70-80% of total, whereas bumetanide-inhibitable ouabain-insensitive uptake accounted for 15-25% of total. K+ channel blockers such as BaCl2 reduced uptake by approximately 5%. Bumetanide inhibited 86Rb+ uptake with an IC50 of 0.5 microM, while furosemide inhibited with an IC50 of about 20 microM. Bumetanide-inhibitable 86Rb+ uptake was reduced in Na(+)-free or Cl(-)-free media, suggesting that Na+ and Cl- were required for optimal uptake via this mechanism. These characteristics are consistent with a Na+, K+, Cl- cotransporter in NPE cells. Treatment of NPE cells for 15 min with phorbol 12-myristate, 13-acetate (PMA), an activator of protein kinase C, caused a 50-70% decrease in 86Rb+ uptake via the Na+, K+, Cl- cotransporter. Other 86Rb+ uptake mechanisms were not affected. 86Rb+ uptake via the Na+, K+, Cl- cotransporter could be inhibited by other phorbol esters and by dioctanoylglycerol, an analog of diacylglycerol, but not by 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C. Staurosporine, a protein kinase C inhibitor, blocked phorbol ester inhibition of 86Rb+ uptake. These data suggest that a Na+, K+, Cl- cotransporter in NPE cells is inhibited by activation of protein kinase C.  相似文献   

10.
In contrast to rat and human erythrocytes, nucleated erythrocytes from two fish species (Cyprinus carpio and Salmo trutta) underwent almost complete haemolysis in 20 min of EDTA addition. Using Ca2+/Mg2+ EGTA-citrate buffer, we observed that half-maximal haemolysis of fish erythrocytes occurs at [Ca2+]o approximately 10 microM independently of extracellular Mg2+ concentration. Attenuation of [Ca2+]o with EGTA also decreased stability of the plasma membrane of vascular smooth muscle cells (VSMC) and HeLa cells, indicated by a three- to five-fold elevation of lactate dehydrogenase release and passive permeability of plasma membrane for Na+. In VSMC, EGTA lowered [Ca2+]i by approximately 20%. This effect was absent in VSMC-loaded with the intracellular Ca2+ chelator BAPTA. In contrast to EGTA, BAPTA did not affect haemoglobin release from fish erythrocytes and passive permeability for Na+ in VSMC. Viewed collectively, our data show that in nucleated cells, extracellular Ca2+ plays a crucial role in the maintenance of plasma membrane integrity.  相似文献   

11.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

12.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

13.
The Kd for ouabain for inhibition of Na+,K+-ATPase isolated from murine plasmocytoma MOPC 173 cells is 120 microM, but when isolated in the presence of EDTA, it is 100-fold lower (1.2 microM). Simultaneous addition of muscle tropomyosin and calcium to sensitive membranes restored the original insensitivity (tropomyosin bound to the membranes in an irreversible and saturable manner). For comparison 86Rb influx into intact cells, mediated by the Na+,K+-pump, is half-maximally inhibited at 50 microM ouabain. Calcium converts the enzyme to an insensitive form. This appeared to involve calmodulin because after extraction of calmodulin with EDTA and EGTA from sensitive membranes, they could not be made insensitive by the addition of tropomyosin and Ca2+. Addition of exogenous calmodulin to these calmodulin-depleted membranes was required, in addition to tropomyosin and Ca2+, to decrease the ouabain sensitivity. The involvement of calmodulin was further assessed by measuring the range of Ca2+ concentrations required to convert to the insensitive form. At saturating concentrations of tropomyosin, increasing free [Ca2+] up to 3 microM led to an heterogeneous population of Na+,K+-ATPase forms. The calcium dependency was a saturable process. The shift to the insensitive form was half maximal at 0.65 + 0.11 microM free Ca2+ and was abolished by the addition of troponin I or trifluoroperazine (0.1 mM). These results suggest that, in murine plasmocytoma cells, the intrinsic sensitivity of Na+,K+-ATPase to ouabain might be regulated by a calmodulin-dependent process within a submembrane contractile-like environment.  相似文献   

14.
Cs+ decreases K+ permeability in nerve and muscle cells. Its effects on the pancreatic B-cell function were studied with mouse islets. In the presence of 3 mM glucose, Cs+ substitution for K+ steadily inhibited 86Rb+ efflux and hyperpolarized the B-cell membrane. Addition of Cs+ to a K+-medium also inhibited 86Rb+ efflux, but depolarized the B-cell membrane. None of these changes altered insulin release. Substitution of Cs+ for K+ in a medium containing 10 mM glucose caused a Ca2+-dependent stimulation of insulin release and 45Ca2+ efflux, produced an initial fall and a secondary rise in 86Rb+ efflux and augmented the electrical activity in B-cells. Reintroduction of K+ to the medium was followed by a marked and transient inhibition of insulin release, that was blocked by ouabain and accompanied by an inhibition of 45Ca2+ and 86Rb+ efflux and by a hyperpolarization of the B-cell membrane. Addition of Cs+ to a K+ medium containing 10 mM glucose stimulated insulin release, 45Ca2+ efflux and 86Rb+ efflux. It also increased the electrical activity in B-cells. In the absence of Ca2+, however, Cs+ addition decreased the rate of 86Rb+ efflux. The effects of Cs+ on the B-cell function may be explained by its ability to decrease K+ permeability of the plasma membrane, by its inability to activate the sodium pump, and by a third unidentified effect likely brought about by the accumulation of intracellular Cs+.  相似文献   

15.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

16.
Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic Ca2+ concentration have been shown to trigger ion efflux from guard cells, resulting in stomatal closure. Here, we report a novel type of largely voltage-independent K+-selective ion channel in the vacuolar membrane of guard cells that is activated by physiological increases in the cytoplasmic Ca2+ concentration. These vacuolar K+ (VK) channels had a single channel conductance of 70 pS with 100 mM KCI on both sides of the membrane and were highly selective for K+ over NH4+ and Rb+. Na+, Li+, and Cs+ were not measurably permeant. The Ca2+, voltage, and pH dependences, high selectivity for K+, and high density of VK channels in the vacuolar membrane of guard cells suggest a central role for these K+ channels in the initiation and control of K+ release from the vacuole to the cytoplasm required for stomatal closure. The activation of K+-selective VK channels can shift the vacuolar membrane to more positive potentials on the cytoplasmic side, sufficient to activate previously described slow vacuolar cation channels (SV-type). Analysis of the ionic selectivity of SV channels demonstrated a Ca2+ over K+ selectivity (permeability ratio for Ca2+ to K+ of ~3:1) of these channels in broad bean guard cells and red beet vacuoles, suggesting that SV channels play an important role in Ca2+-induced Ca2+ release from the vacuole during stomatal closure. A model is presented suggesting that the interaction of VK and SV channel activities is crucial in regulating vacuolar K+ and Ca2+ release during stomatal closure. Furthermore, the possibility that the ubiquitous SV channels may represent a general mechanism for Ca2+-induced Ca2+ release from higher plant vacuoles is discussed.  相似文献   

17.
1. Sealed pigeon erythrocyte 'ghosts' were prepared containing ATP and the Ca2+-activated photoprotein obelin to investigate the relationship cyclic AMP formation and internal free Ca2+. 2. The 'ghosts' were characterized by (a) morphology (optical and electron microscopy), (b) composition (haemoglobin, K+, Na+, Mg2+, ATP, obelin), (c) permeability to Ca2+, assessed by obelin luminescence and (d) hormone sensitivity (the effect of beta-adrenergic agonists and antagonists on cyclic AMP formation). 3. The effect of osmolarity at haemolysis and ATP at resealing on these parameters was investigated. 4. Sealed 'ghosts', containing approx. 2% of original haemoglobin, 150mM-K+, 0.5MM-ATP, 10(3)--10(4) obelin luminescence counts/10(6) 'ghosts', which were relatively impermeable to Ca2+ and in which cyclic AMP formation was stimulated by beta-adrenergic agonists over a concentration range similar to that for intact cells, could be prepared after haemolysis in 6mM-NaCl3mM-MgCl2/50mM-Tes, pH7, and resealing for 30min at 37 degrees C in the presence of ATP and 150mM-KCl. 5. The initial rate of adrenaline-stimulated cyclic AMP formation in these 'ghosts' was 30--50% of that in intact cells and was inhibited by the addition of extracellular Ca2+. Addition of Ca2+ to the 'ghosts' resulted in a stimulation of obelin luminescence, indicating an increase in internal free Ca2+ under these conditions. 6. The ionophore A23187 increased the rate of obelin luminescence in the 'ghosts' and also inhibited the adrenaline-stimulated increase in cyclic AMP. 7. The effect of ionophore A23187 on obelin luminescence and on cyclic AMP formation in the 'ghosts' was markedly decreased by sealing EGTA inside the 'ghosts'. 8. It was concluded that cyclic AMP formation inside sealed pigeon erythrocyte 'ghosts' could be inhibited by more than 50% by free Ca2+ concentrations in the range 1--10 micrometer.  相似文献   

18.
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent.  相似文献   

19.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The release of gamma-hydroxybutyrate from preloaded rat brain striatal slices was investigated. K+-induced depolarization caused an efflux of gamma-hydroxybutyrate of about 50 fmol min-1 mg-1 (wet weight), but in a Ca2+-free medium containing Mg2+, the evoked release was reduced by 50-60%. The release was higher when 100 microM veratridine was used as a depolarizing agent. The efflux of gamma-hydroxybutyrate is related to veratridine and K+ concentration, and is strongly inhibited by 10 microM tetrodotoxin. The Ca2+ channel blocker verapamil induces a large decrease in the efflux of gamma-hydroxybutyrate after both K+- and veratridine-induced depolarization. These results are in favour of a possible transmitter function for gamma-hydroxybutyrate in rat striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号