首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.  相似文献   

2.
Langerin is a type II transmembrane cell surface receptor found on Langerhans cells. The extracellular domain of langerin consists of a neck region containing a series of heptad repeats and a C-terminal C-type carbohydrate-recognition domain (CRD). A role for langerin in processing of glycoprotein antigens has been proposed, but until now there has been little study of the langerin protein. In this study, analytical ultracentrifugation and circular dichroism spectroscopy of recombinant soluble fragments of human langerin have been used to show that the extracellular region of this receptor exists as a stable trimer held together by a coiled coil of alpha-helices formed by the neck region. The langerin CRD shows specificity for mannose, GlcNAc, and fucose, but only the trimeric extracellular domain fragment binds to glycoprotein ligands. Langerin extracellular domain binds mammalian high mannose oligosaccharides, as well mannose-containing structures on yeast invertase but does not bind complex glycan structures. Full-length langerin stably expressed in rat fibroblast transfectants mediates efficient uptake and degradation of a mannosylated neoglycoprotein ligand. pH-dependent ligand release appears to involve interactions between the CRDs or between the CRDs and the neck region in the trimer. The results are consistent with a role for langerin in internalization of both self and nonself glycoprotein antigens.  相似文献   

3.
The hemolytic lectin CEL-III forms transmembrane pores in the membranes of target cells. A study on the effect of site-directed mutation at Lys405 in domain 3 of CEL-III indicated that replacements of this residue by relatively smaller residues lead to a marked increase in hemolytic activity, suggesting that moderately destabilizing domain 3 facilitates formation of transmembrane pores through conformational changes.  相似文献   

4.
Lung surfactant protein D (SP-D) shows calcium-dependent binding to specific saccharides, and is similar in domain structure to certain members of the calcium-dependent (C-type) lectin family. Using a degenerate oligomeric probe corresponding to a conserved peptide sequence derived from the amino-terminus of the putative carbohydrate binding domain of rat and bovine SP-D, we screened a human lung cDNA library and isolated a 1.4-kb cDNA for the human protein. The relationship of the cDNA to SP-D was established by several techniques including amino-terminal microsequencing of SP-D-derived peptides, and immunoprecipitation of translation products of transcribed mRNA with monospecific antibodies to SP-D. In addition, antibodies to a synthetic peptide derived from a predicted unique epitope within the carbohydrate recognition domain of SP-D specifically reacted with SP-D. DNA sequencing demonstrated a noncollagenous carboxy-terminal domain that is highly homologous with the carboxy-terminal globular domain of previously described C-type lectins. This domain contains all of the so-called "invariant residues," including four conserved cysteine residues, and shows high homology with the mannose-binding subfamily of C-type lectins. Sequencing also demonstrated an amino-terminal collagenous domain that contains an uninterrupted sequence of 59 Gly-X-Y triplets and that also contains the only identified consensus for asparagine-linked oligosaccharides. The studies demonstrate that SP-D is a member of the C-type lectin family, and confirm predicted structural similarities to conglutinin, SP-D, and the serum mannose binding proteins.  相似文献   

5.
Effects of chemical modification of carboxyl groups in the hemolytic lectin CEL-III on its activities were investigated. When carboxyl groups were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine methyl ester, hemolytic activity of CEL-III decreased as the EDC concentration increased, accompanied by reduction of oligomerization ability and hemagglutinating activity. However, binding ability of CEL-III for immobilized lactose was retained fairly well after modification, suggesting that one of two carbohydrate-binding sites might be responsible for such inactivation of CEL-III.  相似文献   

6.
CEL-III is a Ca(2+)-dependent, galactose/N-acetylgalactosamine (GalNAc)-specific lectin isolated from the marine invertebrate Cucumaria echinata. This lectin exhibits strong hemolytic activity and cytotoxicity through pore formation in target cell membranes. The amino acid sequence of CEL-III revealed the N-terminal two-thirds to have homology to the B-chains of ricin and abrin, which are galactose-specific plant toxic lectins; the C-terminal one-third shows no homology to any known proteins. To examine the carbohydrate-binding ability of the N-terminal region of CEL-III, the protein comprising Pyr1-Phe283 was expressed in Escherichia coli cells. The expressed protein showed both the ability to bind to a GalNAc-immobilized column as well as hemagglutinating activity for rabbit erythrocytes, confirming that the N-terminal region has binding activity for specific carbohydrates. Since the C-terminal region could not be expressed in E. coli cells, a fragment containing this region was produced by limited proteolysis of the native protein by trypsin. The resulting C-terminal 15 kDa fragment of CEL-III exhibited a tendency to self-associate, forming an oligomer. When mixed with erythrocytes, the oligomer of the C-terminal fragment caused hemagglutination, probably due to hydrophobic interaction with cell membranes, while the monomeric fragment did not. Chymotryptic digestion of the preformed CEL-III oligomer induced upon lactose binding also yielded an oligomer of the C-terminal fragment comprising six molecules of the 16 kDa fragment. These results suggest that after binding to cell surface carbohydrate chains, CEL-III oligomerizes through C-terminal domains, leading to the formation of ion-permeable pores by hydrophobic interaction with the cell membrane.  相似文献   

7.
CEL-III is a Ca(2+)-dependent lectin purified from a sea cucumber, Cucumaria echinata. This protein exhibits strong hemolytic activity as well as cytotoxicity toward some cultured cell lines. Hemolysis is caused by CEL-III oligomers formed in the cell membrane after binding to specific carbohydrate chains on the cell surface. We have found that the oligomerization of CEL-III is also induced by the binding of simple carbohydrates, such as lactose, in aqueous solution under high pH and high ionic strength conditions. From gel filtration analysis of the oligomerization of CEL-III, it was found that the formation of the CEL-III oligomer is effectively induced by the binding of lactose and lactulose, disaccharides containing a beta-galactoside structure. Electron micrographs of the resulting oligomers revealed them to exist as particles with a size of approximately 20-30 nm. The oligomerization process required more than 1 h, which is consistent with the increase in surface hydrophobicity as measured using a fluorescent probe, 8-anilinonaphthalene-1-sulfonate. However, a change in the far-UV CD spectra as well as small-angle X-ray scattering occurred within a few minutes, suggesting that a structural change in the protein takes place rapidly, but the following growth of the oligomer is a much slower process.  相似文献   

8.
The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.  相似文献   

9.
A C-type lectin was previously isolated from the blood of healthy Atlantic salmon (Salmo salar) and this salmon serum lectin (SSL) was found to opsonise bacteria. Selective binding to bacteria in vivo requires that the lectin be able to recognise a carbohydrate pattern on the bacterial surface distinguishable from that of the host. In order to investigate this selectivity in the lectin, a phage-display antibody was prepared and then used for detection of lectin by Western blotting. A carbohydrate binding-inhibition assay with Western blot detection of the lectin showed mannose to be the primary ligand and related sugars including glucose, N-acetylglucosamine and methyl alpha-D-mannopyranoside to be additional ligands of this lectin. The SSL in serum detected by Western blotting was shown to form a complex oligomer. These results show that the salmon serum lectin is oligomeric in blood and that it recognizes a broad spectrum of carbohydrates with optimal binding to mannose. The lectin might therefore be an ideal opsonin for multiple salmon pathogens with carbohydrate arrays on their surfaces. No similar lectins were identified in the sera of other fish by Western blotting using the phage-display antibody. Molecular analysis will be required in order to determine whether homologous lectins are expressed in related fish species. It is anticipated that similar lectins might have related pathogen recognition roles in divergent fish species.  相似文献   

10.
A galactose-binding lectin from the venom of the snake Trimeresurus stejnegeri consists of isolated carbohydrate recognition domains, belonging to group VII of the C-type animal lectins. As a first step toward determining the tertiary structure of the galactose-specific lectin, we produced the lectin in Escherichia coli. By in vitro refolding and affinity chromatography, modest amounts (8 mg/liter) of active recombinant proteins were obtained. The recombinant protein was homogeneous, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. Its amino acid sequence without the initiated methionine at the N-terminus was also characterized by mass spectrometry. The data of hemagglutination and enzyme-linked lectin binding assays demonstrated that the recombinant lectin showed similar sugar-binding activity as the native protein. In addition, fluorescence spectroscopy and circular dichroism also showed obviously their structural similarity.  相似文献   

11.
12.
CEL-III, a galactose/N-acetylgalactosamine (Gal/GalNAc)-specific lectin purified from a marine invertebrate, Cucumaria echinata, has a strong hemolytic activity, especially toward human and rabbit erythrocytes in the presence of Ca2+. We evaluated the role of Ca2+ in hemagglutinating and hemolytic activities of CEL-III. We found that Ca2+ is closely associated with both activities of CEL-III. The fluorescence spectra of CEL-III upon binding to Ca2+ were measured. The result showed a structural change of CEL-III in the presence of Ca2+. The structural change of CEL-III upon Ca2+ binding was further demonstrated by stabilization against urea denaturation and by insusceptibility to protease digestions. CEL-III was completely unfolded at a low concentration of 2 M urea, while CEL-III complexed with Ca2+ was stable in 6 M urea. As for protease digestions, CEL-III monomer and oligomer were readily digested by trypsin, chymotrypsin, and papain in the absence of Ca2+, while they were insusceptible to the three proteases in the presence of Ca2+. The papain digestion of the decalcified oligomer produced a large C-terminal peptide, suggestting that the C-terminal region of CEL-III may participate in oligomerization of CEL-III as a core domain.  相似文献   

13.
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel C-type lectin gene from scallop Argopecten irradians (designated as AiCTL-6) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of AiCTL-6 was 1080 bp. The open reading frame encoded a polypeptide of 307 amino acids, including a signal sequence and a C-type lectin-like domain (CTLD) of 150 amino acid residues longer than any usual CTLD. It contained six conserved cysteine residues involved in the formation of three internal disulfide bridges and an EPD (Glu269-Pro270-Asp271) motif at the Ca2+-binding site 2. The deduced amino acid sequence of AiCTL-6 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, AiCTL-6 mRNA was found mainly in hepatopancreas and gill, and marginally expressed in other tissues. After the scallops were challenged by Listonella anguillarum for 6 h, the mRNA expression of AiCTL-6 was up-regulated significantly to 7.2-fold compared to the blank group. While at 9 h post Micrococcus luteus challenge, its expression level was 60.1 times higher than that of the blank group. The functional activity of AiCTL-6 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiCTL-6 could agglutinate Gram-negative bacteria Ecoli TOP10F′, Gram-positive bacteria M. luteus and Staphylococcus aureus. These results collectively suggested that AiCTL-6, as a novel member of C-type lectin family, contributed to the host defense mechanisms against invading microorganism in A. irradians.  相似文献   

14.
Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML). Competitive assays using various sugars showed that GalNAc was the strongest inhibitor, and that the hydroxyl axial position of C4 and acetamido on C2 of GalNAc are critical points of EML recognition. A hydrophobic locus adjacent to GalNAc is also an important region for EML binding. Direct binding assays of EML revealed a stereochemical requirement for a structure adjacent to terminal GalNAc, showing that GalNAc residue is a necessary but not sufficient condition for EML interaction. The capacity of EML to bind epithelial tumor cells makes it a potentially useful tool for study of some over-expressed GalNAc glycoconjugates.  相似文献   

15.
Ebner S  Sharon N  Ben-Tal N 《Proteins》2003,53(1):44-55
Members of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily share a common fold and are involved in a variety of functions, such as generalized defense mechanisms against foreign agents, discrimination between healthy and pathogen-infected cells, and endocytosis and blood coagulation. In this work we used ConSurf, a computer program recently developed in our lab, to perform an evolutionary analysis of this superfamily in order to further identify characteristics of all or part of its members. Given a set of homologous proteins in the form of multiple sequence alignment (MSA) and an inferred phylogenetic tree, ConSurf calculates the conservation score in every alignment position, taking into account the relationships between the sequences and the physicochemical similarity between the amino acids. The scores are then color-coded onto the three-dimensional structure of one of the homologous proteins. We provide here and at http://ashtoret.tau.ac.il/ approximately sharon a detailed analysis of the conservation pattern obtained for the entire superfamily and for two subgroups of proteins: (a) 21 CTLs and (b) 11 heterodimeric CTLD toxins. We show that, in general, proteins of the superfamily have one face that is constructed mostly of conserved residues and another that is not, and we suggest that the former face is involved in binding to other proteins or domains. In the CTLs examined we detected a region of highly conserved residues, corresponding to the known calcium- and carbohydrate-binding site of the family, which is not conserved throughout the entire superfamily, and in the CTLD toxins we found a patch of highly conserved residues, corresponding to the known dimerization region of these proteins. Our analysis also detected patches of conserved residues with yet unknown function(s).  相似文献   

16.
17.
The lectin-like oxidized low-density lipoprotein scavenger receptor (LOX-1) is a pro-inflammatory marker and Type II membrane protein expressed on vascular cells and tissues. The LOX-1 extracellular domain mediates recognition of oxidized low-density lipoprotein (oxLDL) particles that are implicated in the development of atherosclerotic plaques. To study the molecular basis for LOX-1-mediated ligand recognition, we have expressed, purified and refolded a recombinant LOX-1 protein and assayed for its biological activity using a novel fluorescence-based assay to monitor binding to lipid particles. Overexpression of a hexahistidine-tagged cysteine-rich LOX-1 extracellular domain in bacteria leads to the formation of aggregates that accumulated in bacterial inclusion bodies. The hexahistidine-tagged LOX-1 molecule was purified by affinity chromatography from solubilized inclusion bodies. A sequential dialysis procedure was used to refold the purified but inactive and denatured LOX-1 protein into a functionally active form that mediated recognition of oxLDL particles. This approach allowed slow LOX-1 refolding and assembly of correct intrachain disulfide bonds. Circular dichroism analysis of the refolded LOX-1 molecule demonstrated a folded state with substantial alpha-helical content. Using immobilized recombinant, refolded LOX-1 we demonstrated a 70-fold preferential recognition for oxLDL over native LDL particles. Thus, a protein domain containing intrachain disulfide bonds can be reconstituted into a functionally active state using a relatively simple dialysis-based technique.  相似文献   

18.
The pore-forming activity of CEL-III, a Gal/GalNAc specific lectin from the Holothuroidea Cucumaria echinata, was examined using artificial lipid membranes as a model system of erythrocyte membrane. The carboxyfluorescein (CF)-leakage studies clearly indicated that CEL-III induced the formation of pores in the dipalmitoyl phosphatidyl choline (DPPC)-lactosyl ceramide (LacCer) liposomes effectively but not in the DPPC-glucosyl ceramide (GlcCer) liposomes or DPPC liposomes. Such a leakage of CF was strongly inhibited by lactose, a potent inhibitor of CEL-III, suggesting that the leakage is mediated through the specific binding of CEL-III to the carbohydrate chains on the surface of the liposomes. The leakage of CF from the DPPC-lactosyl ceramide liposomes was pH-dependent, and it increased with increasing pH. The immunoblotting analysis and circular dichroism data indicated that upon interaction with liposomes, CEL-III associated to form an oligomer concomitantly with a marked conformational change. Furthermore, channel measurements showed that CEL-III has an ability to form small ion channels in the planar lipid bilayers consisting of diphytanoylphosphatidylcholine and human globoside (Gb4Cer)/LacCer.  相似文献   

19.

Background

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca2 +-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores.

Methods

Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined.

Results

K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane.

Conclusions

Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III.

General significance

The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.  相似文献   

20.
CEL-III, a galactose/N-acetylgalactosamine (Gal/GalNAc) specific lectin purified from a marine invertebrate Cucumaria echinata has a strong hemolytic activity especially toward human and rabbit erythrocytes. We determined the primary structure of the CEL-III by examining the amino acid sequences of the protein and the nucleotide sequence of the cDNA. The cDNA encoding CEL-III has 1823 nucleotides and an open reading frame of 1296 nucleotides. CEL-III is composed of 432 amino acid residues with a M(r) of 47? omitted?457 and has six internal tandem repeats, each with of 40-50 amino acids, comprising the N-terminal two-thirds of the molecule. Similar repeats are found in the B-chains of cytotoxic plant lectins, such as ricin and abrin, where six repetitive sequences extend throughout the molecules. A hydropathy plot predicts hydrophobic segments in the C-terminal region of CEL-III. These findings suggest that the N-terminal region of CEL-III plays an important role in binding to carbohydrate receptors on the target cell membranes, an event which triggers an intermolecular hydrophobic interaction of the C-terminal region, the result being oligomerization of CEL-III to lead to pore-formation in erythrocyte membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号