首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The founder event in a recently recolonized salmon population in the Baltic Sea (Gulf of Finland) was investigated. To identify the origin of the founders, four wild populations and two hatchery stocks were analysed using six microsatellite loci. The results of assignment tests and factorial correspondence analysis suggest that the initial recolonizers of the river Selja originated from the geographically nearest (7 km) wild population (river Kunda) but as the result of stocking activities, interbreeding between recolonizers and hatchery individuals has occurred in subsequent years. Although the hatchery releases are outnumbering the wild salmon recruitment in the Baltic Sea at present, our results suggest that the native populations may still have an important role in colonization processes of the former salmon rivers.  相似文献   

2.
About 90% of salmon smolts in the Baltic Sea derive from hatchery enhancement programmes designed to compensate for loss of catches and genetic resources due to the damming of salmon rivers. The potential threat of genetic homogenization from extensive hatchery releases, however, has not been thoroughly investigated. We provide evidence that straying from deliberate releases poses a threat to indigenous populations by identifying the origin of 127 fin‐clipped (hatchery) salmon caught in the River Ume‐Vindelälven during 1997 to 2000, using mtDNA and six microsatellite loci. The analysis of eight potential donor stocks revealed that compensatory releases from the R. Ångerman and R. Luleälven hatcheries have resulted in a significant amount of straying to the river Ume‐Vindelälven (at least 10 and 12 migrants per year). As predicted to due to increased migration, the analysis of temporal samples from the wild population of R. Vindelälven showed a decreasing trend in genetic differentiation estimates (measured as Fst) relative to hatchery the hatchery strains of R. Ångermanälven and R. Luleälven. Our results suggest that gene flow from compensatory releases poses a serious threat to the genetic makeup of the existing wild populations in the Baltic.  相似文献   

3.
Bioenergetics modeling was used to estimate zooplankton prey consumption of hatchery and unmarked stocks of juvenile chum salmon (Oncorhynchus keta) migrating seaward in littoral (nearshore) and neritic (epipelagic offshore) marine habitats of southeastern Alaska. A series of model runs were completed using biophysical data collected in Icy Strait, a regional salmon migration corridor, in May, June, July, August, and September of 2001. These data included a temperature (1-m surface versus surface to 20-m average), zooplankton standing crop (surface to 20-m depth versus entire water column), chum salmon diet (percent weight of prey type consumed), energy densities, and weight. Known numbers of hatchery releases were used in a cohort reconstruction model to estimate total abundance of hatchery and wild chum salmon in the northern region of southeastern Alaska, given average survival to adults and for two different (low and high) early marine littoral mortality rate assumptions. Total prey consumption was relatively insensitive to temperature differences associated with the depths potentially utilized by juvenile chum salmon. However, the magnitudes and temporal patterns of total prey consumed differed dramatically between the low and high mortality rate assumptions. Daily consumption rates from the bioenergetics model and CPUE abundance from sampling in Icy Strait were used to estimate amount and percentage of zooplankton standing crop consumed by mixed stocks of chum salmon. We estimated that only a small percentage of the available zooplankton was consumed by juvenile chum salmon, even during peak abundances of marked hatchery and unmarked mixed stocks in July. Total daily consumption of zooplankton by all stock groups of juvenile chum salmon was estimated to be between 330 and 1764 g/km2d1 from June to September in the neritic habitat of Icy Strait. As with any modeling exercise, model outputs can be misleading if input parameters and underlying assumptions are not valid; therefore, additional studies are warranted, especially to determine physiological input parameters, and to improve abundance and mortality estimates specific to juvenile chum salmon. Future bioenergetics modeling is also needed to evaluate consumption by the highly abundant, vertically migrating planktivorous that co-occurred in our study; we suggest that these fishes have a greater impact on the zooplankton standing crop in Icy Strait than do hatchery stock groups of juvenile chum salmon.  相似文献   

4.
Wild stocks of chum salmon, Oncorhynchus keta, have experienced recent declines in some areas of their range. Also, the release of hatchery chum salmon has escalated to nearly three billion fish annually. The decline of wild stocks and the unknown effects of hatchery fish combined with the uncertainty of future production caused by global climate change have renewed interest in the migratory patterns of chum salmon on the high seas. We studied the composition of high-seas mixtures of maturing and immature individuals using baseline data for 20 allozyme loci from 356 populations from throughout the Pacific Rim. Composition estimates were made from three time series. Two of these time series were from important coastal migratory corridors: the Shumagin Islands south of the Alaska Peninsula and the east coast of the Kamchatka Peninsula. The third was from chum salmon captured incidentally in the Bering Sea trawl fishery for walleye pollock. We also analyzed geographically dispersed collections of chum salmon captured in the month of July. The time series show dynamic changes in stock composition. The Shumagin Island corridor was used primarily by Northwest Alaskan and Asian populations in June; by the end of July stocks from the Alaska Peninsula and southern North America dominated the composition. The composition along the Kamchatka coast changed dramatically from primarily Russian stocks in May to primarily Japanese stocks in August; the previously undocumented presence of stocks from the Alaska Peninsula and Gulf of Alaska was also demonstrated. Immature chum salmon from throughout the Pacific Rim, including large proportions of southern North American stocks, contributed to the Bering Sea bycatch during the months of September and October. The migration routes of North American stocks is far more widespread than previously observed, and the Bering Sea is an important rearing area for maturing and immature chum salmon from throughout the species' range.  相似文献   

5.
This study continues the identification monitoring of local sockeye salmon stocks in the Exclusive Economic Zone of Russia on the basis of scale criteria. This study was launched in 2002 as a part of BASIS (the Bering-Aleutian Salmon International Survey). Scale samples of immature sockeye salmon from the trawl catches of the R/V TINRO in the western Bering Sea in August–October 2006 were used for the analysis. The total number of these mixed samples was 1681 specimens for age definition and 1290 specimens for stock identification. The baseline samples (scales from 3162 specimens from Kamchatka, Chukotka and Alaska) were collected by the Kamchatka Research Institute of Fishery and Oceanography (KamchatNIRO), Chuckchee Branch of TINRO (ChukotTINRO), North-East Fishery Protection Service (Sevvostrybvod) and the Alaska Dept. of Fish and Game in the summer of 2006. The results of the analysis indicate the dominant role of the Bristol Bay complex of stocks in the formation of sockeye salmon stocks in the western Bering Sea for the period of the survey: their share was estimated as 55.3% or 88.18 million individuals The most frequent among the Asian stocks were the fishes from the Kamchatka (15.0% or 23.85 million individuals) and Ozernaya Rivers (14.5% or 23.07 million individuals). The summary contribution of minor stocks from north-eastern Kamchatka and Chukotka was also high (11.7% or 18.64 million individuals). The contribution of West Kamchatkan minor stocks was low (3.5% or 5.61 million individuals).  相似文献   

6.
This study investigated stock‐specific variation in selected ecophysiological variables during the feeding migrations of Atlantic salmon Salmo salar in the Baltic Sea. Oxidative stress biomarkers and EROD (ethoxyresorufin‐O‐deethylase, Cyp1A enzyme) activity were used as indicators of possible environmental stress and stable isotopes as determinants of diet and trophic position. Latvian S. salar stocks Daugava and Gauja had distinct stable‐isotope signatures compared to the other stocks, indicating differences in migration patterns, residency or arrival times, or dietary specialization among stocks. Salmo salar originating from Daugava and Gauja also had lower catalase enzyme activity than the other stocks. Post‐smolts originating from rivers of the Gulf of Finland had elevated EROD activities compared to fish of the same age from Bothnian Bay rivers, which could indicate exposure to organochlorine pollutants. No other stock‐specific differences in oxidative stress biomarkers were found. The study demonstrates how genetic, oxidative stress biomarker, EROD and stable‐isotope data may be combined to study trophic position, prey prevalence and environmental stress of mixed S. salar stocks foraging in the sea.  相似文献   

7.
In the Baltic Sea, herring stocks are surveyed and managed according to a spatial allocation based on ICES (International Council for the Exploration of the Sea) subdivisions. In the western Baltic, the distribution areas of two stocks overlap: the Western Baltic Spring Spawning Herring (WBSSH) and the Central Baltic Herring (CBH). Survey results of length‐at‐age data indicate in Subdivision (SD) 24, which is a part of the WBSSH management area, that a considerable fraction of CBH is present and correspondingly erroneously allocated to WBSSH stock indices. Accordingly, a stock Separation Function (SF) based on growth parameters was established to identify the fraction of CBH in the WBSSH area. In the present study, the SF was applied to 8 years of data from the GERman Acoustic Survey (GERAS), which is conducted annually in autumn in ICES subdivisions 21‐24. Results showed a distinct fraction of CBH in SD 24, and exclusion of the CBH greatly improved the quality of the GERAS index used in the assessment of the WBSSH stock.  相似文献   

8.
The recapture rate and survival of hatchery‐reared Atlantic salmon Salmo salar stocked as 1 year‐old parr (semi‐wild) with that of hatchery‐reared Atlantic salmon stocked as 2 year‐old smolts and wild smolts of Atlantic salmon in the northern Baltic Sea were compared. This was done through tagging experiments carried out in 1986–1988 and 1992. The recapture rate of the semi‐wild groups varied from 1·0 to 13·1%, being similar in 3 tagging years and lower in 1 year than that of the wild groups (1·7–17·0%). The recapture rate of the semi‐wild groups was similar (in 2 years) or higher (in 2 years) than that of the hatchery‐reared groups stocked as smolts (1·3–6·3%). The survival of semi‐wild smolts during the sea migration was as high as that of wild Atlantic salmon of an equal size and two to three times higher than hatchery‐reared Atlantic salmon stocked as smolts. The survival rate was positively associated with smolt size. The suitability of hatchery‐reared parr and smolts in the management of reduced Atlantic salmon stocks is compared.  相似文献   

9.
Variation at the three microsatellite (ms) DNA loci in chum salmon was applied to estimate preliminarily the stock composition using a conditional maximum likelihood method in more than 700 fish collected from 14 stations in the Bering Sea and adjacent North Pacific Ocean during September 2003. Regional stock assignment accuracy with these msDNA markers was nearly the same as the previous estimation with mitochondrial (mt) DNA for the Japanese and North American stocks, but decreased for Russian stocks. The temporal stock estimation with msDNA gave a nonrandom distribution pattern of chum stocks, in that the Japanese and Russian stocks increased in the western to central Bering Sea, and the North American stocks were abundant in the eastern Bering Sea and near the Aleutian Islands. However, predominance of the North American stocks in nearly all of the surveyed area was different from the previous mtDNA estimation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The status of twaite shad was investigated within the Southern Baltic Sea (ICES subdivision 22–27) and transitional area between the Baltic and North Seas (division IIIa). The following sources of data were analysed: (i) commercial catch statistics and relevant publications, (ii) records from ichthyological museum collections, (iii) records from recent commercial and recreational fisheries, (iv) research fisheries with trawls. A total of 476 records of twaite shad including more than 16 million individuals were obtained for the time between the years 1836 and 2005. About 72.9% of all records originated from commercial catch statistics and publications, whereas 18.9% were received from ichthyological collections. Research fisheries provided 6.3%, and 1.9% of the records were obtained from recent commercial and recreational fisheries. Most records of twaite shad were estimated for subdivisions 24 (45.2%) and 26 (35.5%). From 1836 to 1959, 29.6% of the records date from the period until 1899. 70.4% of the records of twaite shad originate from the twentieth century until 1959. The mean annual catch of twaite shad between 1891 and 1959 amounted to 86,674 kg within subdivisions 24–26 of the Southern Baltic Sea. Catch data show an approximately 20-year-cyclicity of maximum yields and minimum catches, respectively. The maximum annual yield of twaite shad in subdivisions 24–26 (474,700 kg) was registered in 1940, the minimum annual yield was estimated in 1958 (10 kg). In the 1950s, the annual catches of twaite shad declined sharply. Until 1960 twaite shad catches and records originated mainly from the Pommeranian Bay/Pommeranian Coast and adjacent waters including the Szczecin Lagoon (subdivision 24), the Bay of Gdańsk, Vistula Lagoon and Vistula Spit (subdivision 26) and from the Curonian Lagoon and Curonian Spit (subdivision 26). The highest catches of twaite shad originated from the area of Curonian Lagoon/Curonian Spit from 1941 to 1960. Seasonal catches of twaite shad showed maximum values from May to July. From 1960 to 1989, only four records of A. fallax were registered in the Southern Baltic Sea which originated from German coastal waters in subdivisions 22 and 24. A total of 107 records of twaite shad was obtained in subdivisions 20–27 from 1990 to 2005. Most of these recent records originate from a twaite-shad stock in subdivisions 24, 25 and 26. There are indications which suggest a separate stock of twaite shad in subdivisions 20 and 21. Disappearance and recovery of twaite shad stocks were probably caused by the following factors: construction of barriers in rivers with spawning sites of twaite shad; habitat destruction in those rivers as consequence of gravel extraction and reengineering scheme to improve navigation and for flood defence purposes, water pollution in the lagoons of the Southern Baltic and in their tributaries, commercial fishery in the Southern Baltic and climatic variation in the Baltic Sea basin south of the latitude of 60° N. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

11.
We examined the inheritance of the sea migration pattern of Atlantic salmon, Salmo salar, in a crossing and tagging experiment in the Baltic Sea. Individuals from the parental stocks, Neva and Iijoki, and their reciprocal hybrids were released as 2-year-old smolts, into the same estuary of the Bothnian Sea in 1994. Two thousand smolts from each of the four groups were marked with Carlin tags. The recapture rate of the tags was nearly 10%. We used log-linear models to analyse the marine distribution of the salmon groups from the tag recovery data. The pure stocks and their pooled hybrid groups all showed statistically significant differences between each other in spatial and temporal sea distribution. The Iijoki salmon were more frequently (9%) caught outside the Bothnian Sea than were the Neva salmon (2%). The majority of the Iijoki salmon (55%), but fewer Neva salmon (40%), were caught in the second sea year. In spatial distribution, the hybrids seemed to be intermediate between the parental stocks, with no differences between reciprocal female and male lines. In duration of sea migration and age at maturity, however, the hybrids were very similar to their maternal line, the effect of which was thus clearly stronger than that of the paternal line. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

12.
Genetic homogenization has been recognized as a serious threat in an increasing number of species, including many salmonid fishes. We assessed the rate and impact of immigration from the main hatchery stocks of Atlantic salmon in the Gulf of Bothnia into one of the largest wild salmon populations in the Baltic Sea, the River Vindel?lven, within a temporal framework of 18 years (from 1985-2003). We provide genetic evidence based on mtDNA and microsatellite markers, using mixed-stock analysis, that a large proportion (66%) of fin-damaged spawners (n=181) caught in the Ume/Vindel?lven during 1997-2003 originated from the hatcheries in the Rivers Angerman?lven, Lule?lven and Ljusnan. The maximum-likelihood estimate of immigration rate from these hatcheries into the wild Vindel?lven population was 0.068 (95% CI 0.021-0.128) over the studied time period (1985-2003) and reached up to a quarter (m=0.249, 95% CI 0.106-0.419) of the total population during 1993-2000. This resulted in significant (P<0.01) genetic homogenization trend between the wild Vindel?lven population and hatchery stocks of the Angerman?lven and Lule?lven. Our results demonstrate extensive straying from geographically distant hatchery releases into wild salmon population and emphasize the genetic risks associated with current large-scale stocking practices in the Baltic Sea.  相似文献   

13.
Modern salmon hatcheries in Southeast Alaska were established in the 1970s when wild runs were at record low levels. Enhancement programs were designed to help rehabilitate depressed fisheries and to protect wild salmon stocks through detailed planning and permitting processes that included focused policies on genetics, pathology, and management. Hatcheries were located away from significant wild stocks, local sources were used to develop hatchery broodstocks, and juveniles are marked so management can target fisheries on hatchery fish. Initially conceived as a state-run system, the Southeast Alaska (SEAK) program has evolved into a private, non-profit concept centered around regional aquaculture associations run by fishermen and other stakeholders that pay for hatchery operations through landing fees and sale of fish. Today there are 15 production hatcheries and 2 research hatcheries in SEAK that between 2005 and 2009 released from 474 to 580 million (average 517 million) juvenile salmon per year. During this same period commercial harvest of salmon in the region ranged from 28 to 71 million salmon per year (average 49 million). Contributions of hatchery-origin fish to this harvest respectively averaged 2%, 9%, 19%, 20%, and 78% for pink, sockeye, Chinook, coho, and chum salmon. Both hatchery and wild salmon stocks throughout much of Alaska have experienced high marine survivals since the 1980s and 1990s resulting in record harvests over the past two decades. Although some interactions between hatchery salmon and wild salmon are unavoidable including increasing concerns over straying of hatchery fish into wild salmon streams, obvious adverse impacts from hatcheries on production of wild salmon populations in this region are not readily evident.  相似文献   

14.
The susceptibility and resistance of hatchery-reared salmon parr, native to the rivers Neva (U.S.S.R. Baltic Sea), Alta (northern Norway) and Lone (western Norway) (both eastern Atlantic Ocean), to Gyrodactylus salaris from Norway, was examined. The level of resistance to the parasite was assessed from counts, made on anaesthetized salmon, ofthe numbers of G. salaris after an initial experimental exposure (2 weeks) to G. salaris-infected salmon. Three experiments, all in water at c. 12° C, were carried out: (1) 50 Alta and 50 Neva salmon, initial mean parasite intensity c. 12; (2) 50 Lone and 50 Neva salmon, initial mean parasite intensity c. 60; (3) 10 Lone and 10 Neva salmon individually isolated, initial intensity one gravid G. salaris . In both the Norwegian salmon stocks, the G. salaris infrapopulations steadily increased during the experimental period of 5 weeks, in contrast to a prominent decline in the Neva salmon stock, after, respectively: (Exp. 1) week 3, average peak intensity 32.6; (Exp. 2) week 2, average peak intensity 58.7; and (Exp. 3) week 3, average peak intensity 6.3. The hatchery-reared Baltic Neva stock demonstrated both an innate and an acquired resistance towards G. salaris , in contrast to the highly susceptible, Norwegian Alta and Lone salmon stocks.  相似文献   

15.
The susceptibility of a Baltic salmon stock Salmo salar (Indals?lv, central Sweden) to Norwegian Gyrodactylus salaris (Figga strain, central Norway) was experimentally tested and compared with previously obtained results on East Atlantic salmon (Lierelva, SE Norway). Contrary to expectation, the Baltic salmon, which had no prior exposure to this parasite strain, appeared almost as susceptible as the Norwegian salmon parr that naturally experience G. salaris-induced mortality. Individually isolated salmon of both stocks sustained G. salaris infections with little evidence of innate resistance. A few individuals of the Indals?lv stock controlled their infection from the beginning, but overall there was considerable heterogeneity in the course of infection in both stocks. On individual hosts, G. salaris growth rates declined steadily throughout the infection, a trend which was particularly marked amongst the Lierelva stock. On shoaling Lierelva fish, there was some evidence of reduced parasite population growth towards the end of the infection; this was not apparent in Indals?lv fishes. These results reflect a growing awareness that not all Baltic salmon may be resistant to Norwegian G. salaris, and that Norwegian and Baltic G. salaris strains may differ in virulence. Consequently, management decisions concerning this parasite-host system should be based upon the actual, and tested, susceptibility of stocks under consideration and not upon identification of stocks as either Atlantic or Baltic.  相似文献   

16.
We investigated the seasonal maturity development of cod in four areas of the Baltic Sea. Two different spawning peaks were identified and found to be consistent over the period 1992–2005. In the Kiel Bight and Mecklenburg Bight (ICES SD 22) a spawning peak was observed from March to April (spring spawning). In the areas of the Arkona Sea (ICES SD 24) and Bornholm Sea (ICES SD 25) the spawning peak occurred during summer. In the Bornholm Sea, the main spawning activities began in June and ended in September, with a spawning peak in June–August (summer spawning). In the Arkona Sea, which is a transition area between the Mecklenburg Bight and the central Baltic Sea, spawning began in March and lasted until July, with a spawning peak in June–July (summer spawning). Seasonal maturity development and proportions of spawning cod in June in the Arkona Sea were similar to that of the Bornholm Sea. In addition, the proportion of spawning cod in the Arkona Sea was positively correlated with the size of the spawning stock in the Bornholm Sea. Our results provide evidence of a spatial expansion of spawning activities of the summer spawning stock from the eastern Baltic Sea into the Arkona Sea. Therefore, the Arkona Sea should be considered as one of the spawning habitats of the summer spawning stock of Baltic cod.  相似文献   

17.
Human-caused genetic changes in two Atlanticsalmon (Salmo salar L.) stocks, from therivers Iijoki and Oulujoki in Finland, wereassessed by comparing the genetic parameters ofthese stocks before and after the hatcherybreeding of several successive generations,corresponding to 40 and 33 years since the wildstate. The changes were also compared withthose observed in a large wild salmon stock inthe River Teno during 56 years. In all, thevariation at seven microsatellite DNA loci wasexamined in 11 Atlantic salmon samplesoriginating from these three rivers. Theeffective population size, Ne, duringbreeding of the Iijoki broodstock and for theTeno salmon was also estimated by the temporalmethod based on allele frequency changes. Forthe Iijoki broodstock, the changes could betracked generation by generation from thefounding of the stock. Statisticallysignificant changes in allele frequencies werecommon in the hatchery stocks (F = 0.029, forIijoki), but not in the wild Teno stock, whichwas temporally very stable (F = 0.007). Allelicrichness decreased statistically significantly(24.8%) in the Oulujoki broodstock, from 62.1to 46.7 alleles at nine loci. On average, therewere 9.7 fewer alleles (15.7%) in thecontemporary broodstocks than in thecorresponding historical stocks. The meanheterozygosity was 6.6% lower in thecontemporary Oulujoki broodstock, but remainedunchanged in the Iijoki broodstock. Theestimated Ne for the Iijoki broodstock wasunder 80 for 4.5 generations from 1962 to 1995and for the wild Teno salmon over 900 for 56years from 1939 to 1995.  相似文献   

18.
Based on the data of the analysis of distribution of juvenile chum salmon Oncorhynchus keta that were marked at salmon hatcheries in the southern part of the Sakhalin Island and Japan it has been established that their stocks in the Sea of Okhotsk coastal waters off South Sakhalin and Japan are of mixed origin. One part of the stock is composed of juveniles from hatcheries located in the southern part of Sakhalin, and the other part is composed of migrants from the waters adjacent to Japan. The first part is formed by juveniles both from hatcheries on the Sea of Okhotsk and Sea of Japan coasts of South Sakhalin. The second part is formed by juveniles reared at hatcheries in all regions of Japan: the Pacific and Sea of Okhotsk coasts of Honshu and Hokkaido, and from the Sea of Okhotsk coast of Hokkaido and Izmena (Nemuro) Strait. In July, in the Sea of Okhotsk coastal waters off South Sakhalin, the length and weight of most juvenile chum salmon of Japanese origin exceed 10 cm and 10 g, and juveniles of Sakhalin origin are always smaller than 10 cm and 10 g, which makes it possible to differentiate juveniles in trawl catches.  相似文献   

19.
Understanding stock and age-specific seasonal migrations of Pacific salmon during ocean residence is essential to both the conservation and management of this important resource. Based upon 11 microsatellites assayed on 265 individuals collected aboard international research surveys during winter 2009, we found substantial differences in the age-specific origin of chum salmon (Oncorhynchus keta) in the North Pacific Ocean. Overall, Asian stocks dominated the collections, however, ocean age 1 fish were primarily of Japanese origin and ocean age 2–3+ fish were predominantly of Russian origin. These results suggest that cohorts of chum salmon stocks migrate nonrandomly in the North Pacific Ocean and adjacent seas.  相似文献   

20.
The Baltic herring is one of the key elements of the pelagic ecosystem of the Baltic Sea, being of the most important commercial species of the sea. The structure and dynamics of herring populations (stocks) have been assessed and managed on international level since 1970s. Since 1990, all local herring populations have been combined and assessed as one stock (Central Baltic Herring in Sub-divisions 25–29 and 32). However, the continuously decreasing trend in stock biomass throughout almost 30-years period of observations indicates the failure of the stock management implementation of the scientific advice. The separate assessments of different stocks and results of hydro-acoustic surveys of different sub-units (herring in Sub-divisions 25–27, Sub-divisions 28, 29 and 32 and the Gulf of Riga herring) have revealed rather different situation within combined assessment unit: e.g. fishing mortality of the Gulf of Riga herring has decreased while a sharp increase in mortality is observed in the herring stocks of the North-eastern Baltic (Sub-divisions 28, 29 and 32). At the same time stock abundance and biomass of the Gulf of Riga herring have increased to record high in early 2000s allowing also higher catches. It is concluded that only separate analytical assessment of local populations combined with regular acoustical surveys and following different protection measures have proved to be a successful way in managing the herring stocks. Joint assessment and management of several populations with different structure and dynamics as one combined stock do not allow revealing the real situation and trends in its parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号