首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In men, obesity has generally been associated with reduced plasma testosterone levels and with elevation of the plasma free fatty acids (FFAs). In this study, we investigated the effects of saturated FFAs including palmitic acid (PA) and stearic acid (SA), and polyunsaturated FFA arachidonic acid (AA) on the survival of rat testicular Leydig cell cultured in vitro. PA and SA markedly suppressed Leydig cell survival in a time- and dose-dependent manner. In contrast, AA stimulated the cell proliferation at 5-10 times of physiological concentration. The suppressive effect of PA and SA on cell survival was caused by apoptosis evidenced by DNA ladder formation and Annexin V-EGFP/propidium iodide staining of the cells. The apoptotic effect of PA was possibly mediated by ceramide generation because it could be completely blocked by ceramide synthase inhibitor fumonisin B1 and exogenous ceramide itself could directly induce apoptosis in vitro. Surprisingly, the apoptosis induced by PA could be partly prevented by AA. These results indicate that PA and SA induce apoptosis in testicular Leydig cells by ceramide production and these apoptotic effects may be a possible mechanism for reproductive abnormalities in obese men, and AA can partly prevent the apoptotic effect induced by saturated FFA.  相似文献   

2.
Delayed Phospholipid Degradation in Rat Brain After Traumatic Brain Injury   总被引:5,自引:2,他引:3  
Abstract: Lipid second messengers such as arachidonic acid and its metabolites and diacylglycerols (DAGs) are affected in brain injury. Therefore, changes in the pool size and the fatty acid composition of free fatty acids (FFAs) and DAGs were analyzed in different rat brain areas 4 and 35 days after traumatic injury. Cortical impact injury of low-grade severity was applied in the right frontal somatosensory cortex. Four days after injury, FFAs and DAGs were increased by three- and twofold, respectively, in the injured cortex and to a lesser extent in the contralateral cortex compared with sham-operated animals. Docosahexaenoic acid followed by stearic acid, and arachidonic acid, displayed the greatest changes in both FFAs and DAGs. By day 35, free stearic, oleic, and arachidonic acids remained elevated in the damaged cortex (1.5-fold each). DAGs showed the greatest change, reaching values 2.7-fold higher than sham in all frontal and occipital cortical areas, including brainstem. Oleoyl- and arachidonoyl-DAGs (four- and threefold increase, respectively) followed by docosahexaenoyl-DAGs (twofold) contributed to the DAG accumulation. These results reveal that traumatic brain injury triggers a sustained and time-dependent activation of phospholipase-mediated signaling pathways leading to membrane phospholipid degradation and targeting, early on, docosahexaenoyl phospholipid-enriched excitable membranes.  相似文献   

3.
Neuronal necrosis and apoptosis occur after traumatic brain injury (TBI) in animals and contribute to subsequent neurological deficits. In contrast, relatively little apoptosis is found after mechanical injury in vitro. Because in vivo trauma models and clinical head injury have associated cerebral ischemia and/or metabolic impairment, we transiently impaired cellular metabolism after mechanical trauma of neuronal-glial cultures by combining 3-nitropropionic acid treatment with concurrent glucose deprivation. This produced greater neuronal cell death than mechanical trauma alone. Such injury was attenuated by the NMDA receptor antagonist dizocilpine (MK801). In addition, this injury significantly increased the number of apoptotic cells over that accruing from mechanical injury alone. This apoptotic cell death was accompanied by DNA fragmentation, attenuated by cycloheximide, and associated with an increase in caspase-3-like but not caspase-1-like activity. Cell death was reduced by the pan-caspase inhibitor BAF or the caspase-3 selective inhibitor z-DEVD-fmk, whereas the caspase-1 selective inhibitor z-YVAD-fmk had no effect; z-DEVD-fmk also reduced the number of apoptotic cells after combined injury. Moreover, cotreatment with MK801 and BAF resulted in greater neuroprotection than either drug alone. Thus, in vitro trauma with concurrent metabolic inhibition parallels in vivo TBI, showing both NMDA-sensitive necrosis and caspase-3-dependent apoptosis.  相似文献   

4.
A human hepatocellular in vitro model to investigate steatosis   总被引:6,自引:0,他引:6  
The present study was designed to define an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the metabolic and cytotoxic/apoptotic effects could be separated. This was accomplished by defining the experimental conditions of lipid exposure that lead to significant intracellular fat accumulation in the absence of overt cytotoxicity, therefore allowing to differentiate between cytotoxic and apoptotic effects. Palmitic (C16:0) and oleic (C18:1) acids are the most abundant fatty acids (FFAs) in liver triglycerides in both normal subjects and patients with nonalcoholic fatty liver disease (NAFLD). Therefore, human hepatocytes and HepG2 cells were incubated with a mixture of different proportions of saturated (palmitate) and unsaturated (oleate) FFAs to induce fat-overloading. Similar intracellular levels of lipid accumulation as in the human steatotic liver were achieved. Individual FFAs have a distinct inherent toxic potential. Fat accumulation, cytotoxicity and apoptosis in cells exposed to the FFA mixtures were investigated. The FFA mixture containing a low proportion of palmitic acid (oleate/palmitate, 2:1 ratio) is associated with minor toxic and apoptotic effects, thus representing a cellular model of steatosis that mimics benign chronic steatosis. On the other hand, a high proportion of palmitic acid (oleate/palmitate, 0:3 ratio) might represent a cellular model of steatosis in which saturated FFAs promote an acute harmful effect of fat overaccumulation in the liver. These hepatic cellular models are apparently suitable to experimentally investigate the impact of fat overaccumulation in the liver excluding other factors that could influence hepatocyte behaviour.  相似文献   

5.
Mammalian ecto ADP-ribosyltransferases (ARTs) can regulate the biological functions of various types of cells by catalyzing the transfer of single ADP-ribose moiety from NAD+ to a specific amino acid in a target protein. ART3 is a member of the known ART family which is involved in cell division, DNA-repair and the regulation of the inflammatory response. To elucidate the expression, cellular localization and possible functions of ART3 in central nervous system (CNS) lesion and repair, we performed an acute traumatic brain injury model in adult rats. Western blot analysis showed that the expression of ART3 in ipsilateral brain cortex increased, then reached a peak at day 3 after traumatic brain injury (TBI), and gradually declined during the following days. But in the contralateral brain cortex, no obvious alterations were observed. Immunohistochemistry revealed the highly significant accumulation of ART3 at the ipsilateral brain in comparison to contralateral cerebral cortex. Double immunofluorescence labeling suggested that ART3 was localized mainly in the plasmalemma of neurons, but not in astrocytes or microglias within 3 mm from the lesion site at day 3 post-injury. In addition, we detected the expression profiles of caspase-3 and growth associated protein 43 (GAP-43) whose changes were correlated with the expression profiles of ART3 in this TBI model. Besides, co-localization of ART3/active caspase-3 and ART3/GAP43 were detected in NeuN-positive cells, respectively. Moreover, Pheochromocytoma (PC12) cells were treated with H2O2 to establish an apoptosis model. The results showed that the expression of ART3 was increased in the concentration and time dependence way. To further examine the involvement of ART3 in apoptosis of PC12, 3-Methoxybenzamide was used in flow cytometry analysis of apoptotic cells stained with Annexin V and PI. The experimental group in which 3-Methoxybenzamide used had a relative low level of apoptotic index compared with the untreated group. Together with previous reports, we hypothesize that ART3 may play important roles in CNS pathophysiology after TBI and further research is needed to have a good understanding of its function and mechanism.  相似文献   

6.
Fürstova V  Kopska T  James RF  Kovar J 《Life sciences》2008,82(13-14):684-691
We tested the effects of various types of fatty acids, differing in the degree of saturation and in the cis/trans configuration of the double bond, on the growth and viability of NES2Y cells (a human pancreatic beta-cell line). We found that during a 48-hour incubation period, saturated fatty acids, i.e. palmitic and stearic acids, at a physiologically relevant concentration of 1 mM and higher concentrations induced death of the beta-cells while their counterpart unsaturated fatty acids, i.e. palmitoleic and oleic acids, did not induce cell death at concentrations up to 3 mM. We also found that unsaturated elaidic acid with a trans double bond exerted significant inhibition of growth of the beta-cells at a concentration approximately ten times lower, i.e. 0.1 mM vs. 1 mM, than counterpart oleic acid with a cis double bond. This is the first direct evidence that a trans unsaturated fatty acid is significantly more effective in inhibiting beta-cell growth than a counterpart cis unsaturated fatty acid. Furthermore, we newly demonstrated that beta-cell death induced by saturated fatty acids is related to significant increase of caspase-2 activity (2 to 5-fold increase) but not to caspase-3 activation. The growth-inhibiting effect of saturated fatty acids at concentrations lower than death-inducing concentrations correlates with certain increase of caspase-2 activity.  相似文献   

7.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

8.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

9.
Human mononuclear (MN) and polymorphonuclear (PMN) leukocytes were analyzed for their phospholipid, triglyceride, cholesterol and fatty acid content. The phospholipid/cholesterol ratio was 1.24 for both cels. MN cells contain more phosphatidylcholine (PC), but less phosphatidylserine (PS), phosphatidylethanolamine (PE) and sphingomyelin (SPH) than PMN cells when expressed as percent of total phospholipid. When expressed on the basis of lipid content per cell, MN cells contain less PS, PE and SPH but more triglyceride than PMN cells. PMN cells incorporate palmitic, stearic, linoleic and linolenic acids into their phospholipids, triglycerides or cholesterol esters. The incorporation into triglycerides was highest for all fatty acids. Of the phospholipids, the incorporation was highest into PC. Labeled fatty acids also were found in proteins which had been delipidized by exhaustive extraction with organic solvents. These represent tightly or covalently bound fatty acids. The incorporation of [3H]palmitic acid into this protein fraction is stimulated by insulin.  相似文献   

10.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

11.
When the gastric mucosa is exposed to various irritants, apoptosis and subsequent gastric mucosal lesion can result in vivo. We here show that gastric irritants induced apoptosis in gastric mucosal cells in primary culture and examined its molecular mechanism. Ethanol, hydrogen peroxide, and hydrochloric acid all induced, in a dose-dependent manner, cell death, apoptotic DNA fragmentation, and chromatin condensation, suggesting that each of these gastric irritants induced apoptosis in vitro. Since each of these irritants decreased the mitochondrial membrane potential and stimulated the release of cytochrome c from mitochondria, gastric irritant-induced apoptosis seems to be mediated by mitochondrial dysfunction. Caspase-3, caspase-8, and caspase-9-like activities were all activated simultaneously by each of these irritants and the activation was concomitantly with cell death and apoptotic DNA fragmentation. Furthermore, pre-treatment of gastric mucosal cells with an inhibitor of caspase-8 suppressed the onset of cell death as well as the stimulation of caspase-3- and caspase-9-like activities caused by each of these gastric irritants. Based on these results, we consider that caspase-8, an initiator caspase, plays an important role in gastric irritant-induced apoptosis.  相似文献   

12.
Chronic ethanol exposure is known to affect deacylation-reacylation of membrane phospholipids (PL). In our earlier studies we have demonstrated that chronic exposure to ethanol (EtOH) leads to a progressive increase in membrane phospholipase A2 (PLA2) activity. In the current study, we investigated the effects of chronic EtOH exposure on the incorporation of different free fatty acids (FFAs) into membrane PL. The results suggest that the incorporation of fatty acids into four major PL varied from 9.6 fmol/min/mg protein for docosahexaenoic acid (DHA) into phosphatidylinositol (PI) to 795.8 fmol/min/mg protein for linoleic acid (LA) into phosphatidylcholine (PC). These results also suggest a preferential incorporation of DHA into PC; arachidonic acid (AA) into PI; oleic acid into phosphatidylethanolamine (PE) and PC; LA into PC and stearic acid into PE. Chronic EtOH exposure affected the incorporation of unsaturated fatty acid into PI, phosphatidylserine (PS) and PC. However, EtOH did not affect significantly the incorporation of any of the fatty acids (FA) studied into PE. No significant differences were observed with the stearic acid. It is suggested that acyltransferases may play an important role in the membrane adaptation to the injurious effects of EtOH.  相似文献   

13.
In situ incorporation of two saturated (palmitic, 16:0; stearic, 18:0) and three unsaturated fatty acids (oleic, 18:1; linoleic, 18:2; arachidonic, 20:4) into the four major phospholipids, sphingomyelin, PC, PI and PE, was followed. Transformed cells incorporated unsaturated fatty acids more rapidly, whereas no significant differences were found concerning saturated fatty acids. In vitro determination of phospholipid acylation showed that incorporation of coenzyme A-activated forms of two saturated fatty acids (16:0 and 18:0) and one unsaturated fatty acid (18:1) into phospholipids was increased in transformed cells. Comparison of results obtained in situ and in vitro strongly suggests that incorporation of fatty acids into phospholipids in cultured cells is not limited by acyltransferase activities.  相似文献   

14.
Vancomycin chloride (VCM), a glycopeptide antibiotic, is widely used for the therapy of infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is a major adverse effect in VCM therapy. In this study, we investigated the cellular mechanisms underlying VCM-induced renal tubular cell injury in cultured LLC-PK1 cells. VCM induced a concentration- and time-dependent cell injury in LLC-PK1 cells. VCM caused increases in the numbers of annexin V-positive/PI-negative cells and TUNEL-positive cells, indicating the involvement of apoptotic cell death in VCM-induced renal cell injury. The VCM-induced apoptosis was accompanied by the activation of caspase-9 and caspase-3/7 and reversed by inhibitors of these caspases. Moreover, VCM caused an increase in intracellular reactive oxygen species production and mitochondrial membrane depolarization, which were reversed by vitamin E. In addition, mitochondrial complex I activity was inhibited by VCM as well as by the complex I inhibitor rotenone, and rotenone mimicked the VCM-induced LLC-PK1 cell injury. These findings suggest that VCM causes apoptotic cell death in LLC-PK1 cells by enhancing mitochondrial superoxide production leading to mitochondrial membrane depolarization followed by the caspase activities. Moreover, mitochondrial complex I may play an important role in superoxide production and renal tubular cell apoptosis induced by VCM.  相似文献   

15.
The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are important in maintaining cytoskeletal integrity and DNA repair, and activate deoxyribonucleases, producing cell death with morphological features of apoptosis. To address the question of whether these Bcl-2 and caspase family members participate in the process of delayed neuronal death in humans, we examined brain tissue samples removed from adult patients during surgical decompression for intracranial hypertension in the acute phase after traumatic brain injury (n=8) and compared these samples to brain tissue obtained at autopsy from non-trauma patients (n=6). An increase in Bcl-2 but not Bcl-xL or Bax, cleavage of caspase-1, up-regulation and cleavage of caspase-3, and evidence for DNA fragmentation with both apoptotic and necrotic morphologies were found in tissue from traumatic brain injury patients compared with controls. These findings are the first to demonstrate that programmed cell death occurs in human brain after acute injury, and identify potential pharmacological and molecular targets for the treatment of human head injury.  相似文献   

16.
Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.  相似文献   

17.
Programmed cell death has been proposed to play a role in the death of neurons in acute and chronic degenerative neurologic disease. There is now evidence that the caspases, a family of cysteine proteases, mediate programmed cell death in various cells. In neurons, caspase-3 (CPP32/Yama/apopain), in particular, has been proposed to play a role. We examined the expression of caspase-3 in three models of programmed cell death affecting neurons of the substantia nigra in the rat: natural developmental neuron death and induced developmental death following either striatal target injury with quinolinic acid or dopamine terminal lesion with intrastriatal injection of 6-hydroxydopamine. Using an antibody to the large (p17) subunit of activated caspase-3, we have found that activated enzyme is expressed in apoptotic profiles in all models. Increased p17 immunostaining correlated with increased enzyme activity. The subcellular distribution of activated caspase-3 differed among the models: In natural cell death and the target injury model, it was strictly nuclear, whereas in the toxin model, it was also cytoplasmic. We conclude that p17 immunostaining is a useful marker for programmed cell death in neurons of the substantia nigra.  相似文献   

18.
Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用   总被引:6,自引:0,他引:6  
Gao JX  Zhou YQ  Zhang RH  Ma XL  Liu KJ 《生理学报》2005,57(6):755-760
我们已证实周期蛋白激酶(cyclin-dependent kinases)cdk2、cdc2和cdk5抑制剂roscovitine诱导PC12细胞凋亡。本实验应用caspase-3免疫细胞化学与hoechst 33342荧光化学双标、MTT比色法细胞活性测定和Western blot方法,研究了caspase-3在roscovitine所致PC12细胞凋亡中的作用。结果显示,roscovitine(50μmol/L)处理PC12细胞12h,细胞核染色质凝缩及核碎片形成,同时胞浆中出现caspase-3阳性标志,caspase-3阳性细胞占细胞总数的42%。非特异性caspases抑制剂Z-VAD-FMK(50μmol/L)和caspase-3特异性抑制剂Z-DEVD-FMK(100μmol/L)可部分降低roscovitine所致的细胞死亡,使细胞存活率分别由29.03%(roscovitine)增至58.06%(Z-VAD-FMK+roscovitine)和45.16%(Z-DEVD-FMK+roscovitine):用单克隆non-erythroid α-spectrin抗体检测roscovitine处理组细胞匀浆提取液,表明caspase-3裂解的特异性spectfin 120kDa蛋白产物较对照组显著增加。提示细胞凋亡成分caspases参与roscovitine所敛的细胞凋亡,其中caspase-3发挥重要作用。  相似文献   

19.
Abstract: We tested whether cerebral noradrenaline (NA) may play a central role in mediating the increased production of free fatty acids (FFAs) during cerebral ischemia. Levels of FFAs, cyclic AMP, and NA, as well as ATP, ADP, and AMP, were measured in cerebral cortex during decapitation ischemia in rats 2 weeks after unilateral locus ceruleus lesion. Comparisons were made between the results obtained from the contralateral cortex with normal NA content and the NA-depleted ipsilateral cortex. Although NA depletion was associated with a diminished transient rise of cyclic AMP in response to ischemia, it failed to influence the magnitude of FFA increase or the decline of energy state within the 15-min period of ischemia. A more than twofold increase of total FFAs (sum of palmitic, stearic, oleic, arachidonic, and docosahexaenoic acids) was observed in both hemispheres at 1 min after decapitation, when energy failure became manifest. The increased production of FFAs continued throughout the 15 min of ischemia, with a preferential rise in the levels of stearic and arachidonic acids. There was an inverse correlation between FFA levels and total adenylate pool. The results do not support a major role for NA and cyclic AMP in increasing cortical FFAs during complete ischemia. Instead, they are consistent with the view that impaired oxidative phosphorylation activates deacylating enzymes. Disturbance of reacylation due to energy depletion is probably another factor contributing to the continuous increase of FFAs during prolonged ischemia.  相似文献   

20.
This study investigated the temporal expression and cell subtype distribution of activated caspase-3 following cortical impact-induced traumatic brain injury in rats. The animals were killed and examined for protein expression of the proteolytically active subunit of caspase-3, p18, at intervals from 6 h to 14 days after injury. In addition, we also investigated the effect of caspase-3 activation on proteolysis of the cytoskeletal protein alpha-spectrin. Increased protein levels of p18 and the caspase-3-specific 120-kDa breakdown product to alpha-spectrin were seen in the cortex ipsilateral to the injury site from 6 to 72 h after the trauma. Immunohistological examinations revealed increased expression of p18 in neurons, astrocytes, and oligodendrocytes from 6 to 72 h following impact injury. In contrast, no evidence of caspase-3 activation was seen in microglia at all time points investigated. Quantitative analysis of caspase-3-positive cells revealed that the number of caspase-3-positive neurons exceeded the number of caspase-3-positive glia cells from 6 to 72 h after injury. Moreover, concurrent assessment of nuclear histopathology using hematoxylin identified p18-immunopositive cells exhibiting apoptotic-like morphological profiles in the cortex ipsilateral to the injury site. In contrast, no evidence of increased p18 expression or alpha-spectrin proteolysis was seen in the ipsilateral hippocampus, contralateral cortex, or hippocampus up to 14 days after the impact. Our results are the first to demonstrate the concurrent expression of activated caspase-3 in different CNS cells after traumatic brain injury in the rat. Our findings also suggest a contributory role of activated caspase-3 in neuronal and glial apoptotic degeneration after experimental TBI in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号