首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release process of bacteria into the cytoplasm of soybean nodule cells has been studied, and three functional zones of the infection thread are delineated. Zone 1 is found over the greatest length of very long infection threads. Zone 2 is a short region where membrane mobilization by exocytosis of endoplasmic reticulum (ER) into the infection-thread membrane takes place; the result is that much new membrane and wall degradation enzymes can be provided. In addition, de novo membrane formation takes place inside the infection thread in apposition to the bacterial outer membrane. Zone 3 is the endocytic region where both bacteria and infection-thread wall degradation vesicles are released into the host cytoplasm and constitute a second product of endocytosis at the infection thread tip. Evidence is presented indicating that the symbiosome membrane, even at its time of origin, is composed of membrane from three sources: the host infection-thread membrane, ER, and de novo synthesis; the membrane formation that is so large for these purposes is probably carried out both from the ER directly and also through the Golgi-apparatus synthesis. Evidence is also given that the bacteria have lost their exopolysaccharide coatings before release into symbiosomes.  相似文献   

2.
The peribacteroid membrane (PBM) of symbiosomes from pea root nodules developed in the presence of boron (+B) was labelled by anti-rhamnogalacturonan II (RGII) (anti-rhamnogalacturonan II pectin polysaccharide) antiserum. However, in nodules from plants grown at low boron (-B), anti-RGII pectin polysaccharide did not stain PBMs. Given that RGII pectin binds to borate, and that symbiosomes differentiate aberrantly in -B nodules because of abnormal vesicle traffic, anti-RGII pectin polysaccharide antigens were further analysed. Following electrophoresis and electroblotting, anti-RGII pectin polysaccharide immunostained three bands in +B but not in -B nodule-derived PBMs. A similar banding pattern was observed after the immunostaining of membrane fractions from uninfected roots, indicating that anti-RGII pectin polysaccharide antigens are common to both peribacteroid and plasma membranes. Protease treatment of samples led to disappearance of anti-RGII pectin polysaccharide labelling, indicating that the three immunostained bands correspond to proteins or glycoproteins. The immunochemical study of RGII antigen distribution during nodule development showed that it is strongly present on the PBM of dividing (undifferentiated) symbiosomes but progressively disappeared during symbiosome maturation. In B-deficient nodules, PBMs were never decorated with RGII antigens, and there was an abnormal targeting of vesicles containing pectic polysaccharide (homogalacturanan) to cell membranes. Overall, these results indicate that RGII, boron and certain membrane (glyco)-proteins may interact closely and function cooperatively in membrane processes associated with symbiosome division and general cell growth.  相似文献   

3.
The biogenesis of Symbiodinium symbiosome in the host cells of the sea anemone, Aiptasia pulchella, involves retention of ApRab5 on and exclusion of ApRab11 from the organelle. One predicted consequence of this differential Rab association is the constant membrane fusion of symbiosomes with endocytic vesicles in the absence of parallel membrane retrieval and the subsequent formation of spacious symbiosomes, which nevertheless, contradicts the common perception. To solve this discrepancy, we determined whether membrane fusion occurs between symbiosomes and endocytic vesicles, and whether ApRab11-independent recycling is involved in symbiosome biogenesis. By using the biotin–avidin detection system, we found evidence for symbiosome–endocytic vesicle fusion. Cloning and characterization of ApRab4, an A. pulchella homolog of Rab4, showed that ApRab4 is associated with both the early endocytic and the perinuclear recycling compartments, and its normal function is required for the organization of the recycling compartments. Immunostaining localized ApRab4 to the symbiosome membrane, partially overlapping with ApRab5-decorated microdomains. Significantly, a treatment that impaired Symbiodinium photosynthesis also abolished symbiosome association of ApRab4. Furthermore, ApRab4 was quickly recruited to newly formed phagosomes, but prolonged association only occurred in those harboring live zooxanthelllae. We propose that ApRab4 retention on the symbiosome is an essential part of the mechanism for the biogenesis of Symbiodinium symbiosome.  相似文献   

4.
Catalano CM  Czymmek KJ  Gann JG  Sherrier DJ 《Planta》2007,225(3):541-550
Symbiotic association of legume plants with rhizobia bacteria culminates in organogenesis of nitrogen-fixing root nodules. In indeterminate nodules, plant cells accommodate rhizobial infection by enclosing each bacterium in a membrane-bound, organelle-like compartment called the symbiosome. Numerous symbiosomes occupy each nodule cell; therefore an enormous amount of membrane material must be delivered to the symbiosome membrane for its development and maintenance. Protein delivery to the symbiosome is thought to rely on the plant secretory system; however, the targeting mechanisms are not well understood. In this study, we report the first in-depth analysis of a syntaxin localized on symbiosome membranes. Syntaxins help define a biochemical identity to each compartment in the plant secretory system and facilitate vesicle docking and fusion. Here, we present biochemical and cytological evidence that the SNARE MtSYP132, a Medicago truncatula homologue of Arabidopsis thaliana Syntaxin of Plants 132, localizes to the symbiosome membrane. Using a specific anti-MtSYP132 peptide antibody, we also show that MtSYP132 localizes to the plasma membrane surrounding infection threads and is most abundant on the infection droplet membrane. These results indicate that MtSYP132 may function in infection thread development or growth and the early stages of symbiosome formation. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
Symbiosomes are specific intracellular membrane‐bound vacuoles containing microalgae in a mutualistic Cnidaria (host)–dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin‐XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X‐100 soluble and insoluble fractions, were subjected to 2‐D SDS‐PAGE and identified by MS using an LC‐nano‐ESI‐MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti‐apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.  相似文献   

6.
Intracellular interactions between bacteria and host cells are widespread in nature. In this review, the similarity between the infection processes of bacteria in plant and animal cells will be addressed. As paradigms, we selected the symbiosis between rhizobia and leguminous plants, and the survival of intracellular pathogenic bacteria in animal cells. The rhizobial symbiosis with leguminous plants is a model system for the study of plant-bacterium interactions. Through this interaction, the bacteria are released in a vacuole-like structure, called the symbiosome. The molecular processes, which lead to a functional symbiosome, are far from known. However, membrane fusion processes, and therefore also Ca2+, are crucial to establish this highly specialized organelle-like structure. A homologous system is the infection by certain bacterial pathogens of animal cells. These bacteria enter their host via phagocytosis and avoid the fusion with lysosomes, resulting in a membrane-bound vacuole in which the pathogens survive. The origin and maturation of this phagosome depends on Ca2+-signaling processes in the host cell and on proteins that regulate membrane fusion processes, such as SNAREs, Rab proteins, synaptotagmins and calmodulin. The aim of this review is to compare the endosymbiosis in leguminous plants with the surviving pathogens in animal host cells with a focus on Ca2+-signaling and membrane fusion-related processes. For both systems, the interaction starts with a bacterial entry of the host cell. It will be demonstrated that in both cases Ca2+ is a crucial second messenger. However, more emphasis will be put on the comparison of the later stages of infection, i.e., the formation of specialized bacteria-containing vacuoles. From structural, functional, and proteomic data, it is clear that phagosomes and symbiosomes are more related to each other than originally assumed. Proteins such as V-ATPases, calreticulin, phosphatidylinositol-3-kinase, Rab proteins, and SNAREs are present in both the phagosome and the symbiosome membrane, indicating that common cellular processes are used for building these intracellular organelles.  相似文献   

7.
Localization of H+-ATPases in soybean root nodules   总被引:1,自引:0,他引:1  
The localization of H+-ATPases in soybean (Glycine max L. cv. Stevens) nodules was investigated using antibodies against both P-type and V-type enzymes. Immunoblots of peribacteroid membrane (PBM) proteins using antibodies against tobacco and Arabidopsis H+-ATPases detected a single immunoreactive band at approximately 100 kDa. These antibodies recognized a protein of similar relative molecular mass in the crude microsomal fraction from soybean nodules and uninoculated roots. The amount of this protein was greater in PBM from mature nodules than in younger nodules. Immunolocalization of P-type ATPases using silver enhancement of colloidal-gold labelling at the light-microscopy level showed signal distributed around the periphery of non-infected cells in both the nodule cortex and nodule parenchyma. In the central nitrogen-fixing zone of the nodule, staining was present in both the infected and uninfected cells. Examination of nodule sections using confocal microscopy and fluorescence staining showed an immunofluorescent signal clearly visible around the periphery of individual symbiosomes which appeared as vesicles distributed throughout the infected cells of the central zone. Electron-microscopic examination of immunogold-labelled sections shows that P-type ATPase antigens were present on the PBM of both newly formed, single-bacteroid symbiosomes just released from infection threads, and on the PBM of mature symbiosomes containing two to four bacteroids. Immunogold labelling using antibody against the B-subunit of V-type ATPase from oat failed to detect this protein on symbiosome membranes. Only a very faint signal with this antibody was detected on Western blots of purified PBM. During nodule development, fusion of small symbiosomes to form larger ones containing multiple bacteroids was observed. Fusion was preceded by the formation of cone-like extensions of the PBM, allowing the membrane to make contact with the adjoining membrane of another symbiosome. We conclude that the major H+-ATPase on the PBM of soybean is a P-type enzyme with homology to other such enzymes in plants. In vivo, this enzyme is likely to play a critical role in the regulation of nutrient exchange between legume and bacteroids. Received: 25 November 1998 / Accepted: 6 January 1999  相似文献   

8.
By means of a detailed ultrastructural analysis of nodules induced by Rhizobium etli on the roots of Phaseolus vulgaris, we observe that the development of host-invaded cells is not synchronous. An accumulation of mitochondria was found in freshly invaded host cells, containing only a few symbiosomes (SBs) that are released from highly branched intracellular ramification of the infection threads. Moreover, besides the fusion between the SB membrane with host secretory vesicles, we observe also a great number of fusions between the outer leaflets of adjoining SB membranes, thus resulting in structures that resemble the tight junction network (zona occludens with a five-layered structure) of epithelian cells. This process was found to be induced strongly and earlier both in the invaded host cells of ineffective nodules (elicited by Fix- mutant strains of R. etli) and in the older (senescence) invaded cells of effective nodules, whereas bacteroid division is seldom if ever observed. Our observations strongly suggest that multiple-occupancy SBs also arise by fusion of single-occupancy SBs and the physiological consequence of this process is discussed.  相似文献   

9.
A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.  相似文献   

10.
ABSTRACT. Monoclonal antibodies were obtained against lipopolysaccharides of Gram-negative bacterial endosymbiotes in amoebae and were used to determine the origin and distribution of the antigens. The lipopolysaccharides were located on endosymbiote's surfaces as determined by indirect immunofluorescence staining under both light and electron microscopes. In addition, host symbiosome membranes enclosing the endosymbiotes also contained the same lipopolysaccharides on the cytoplasmic side as shown by indirect immunofluorescence staining after intracellular injection of anti-lipopolysaccharide antibodies. This is the first report for the presence of symbiote-derived lipopolysaccharides on the host symbiosome membranes, and their possible roles are discussed in relation to the prevention of lysosomal fusion with symbiosomes.  相似文献   

11.
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.  相似文献   

12.
ABSTRACT. In the Amoeba-bacteria symbiosis, rod-shaped Gram-negative bacterial endosymbionts reside within symbiosomes in the host cytoplasm, and the host and symbionts are mutually dependent for survival. Three proteins and one group of lipopolysaccharides (LPS) synthesized by the bacterial endosymbionts and two proteins derived from the host cells have been found to be involved in the host-symbiont interactions, although their respective roles are not yet fully known. The symbiont-derived molecules included proteins with molecular weights of 29 kDa, 67 kDa and 96 kDa and LPS. The 29-kDa protein was most abundant in the host cytoplasm, while the 96-kDa protein and LPS were found mostly on the symbiosome membranes. The 67-kDa protein was a GroEL analog and stayed within the symbionts. The host-derived 43-kDa protein, actin, was selectively accumulated by the symbionts, while the 220/225-kDa protein, spectrin, was attached to the symbiosome membranes. The symbiont genes coding for the 29-kDa and 67-kDa proteins were cloned and sequenced. The 29-kDa protein gene was unique with no relation to any known DNA sequences but has a leucine zipper-like motif, suggesting a possible DNA-binding function. The DNA sequence of the 67-kDa protein gene showed a 70% identity with heat-shock-protein genes of Escherichia coli and Coxiella burnetii.  相似文献   

13.
All positive-strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate with endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex, 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.  相似文献   

14.
The interface between the host cell and the microsymbiont is an important zone for development and differentiation during consecutive stages of Rhizobium-legume symbiosis. Legume root nodule extensins, otherwise known as arabinogalactan protein-extensins (AGPEs) are abundant components of infection thread matrix. We have characterized the origin and distribution of these glycoproteins at the symbiotic interface of root nodules of symbiotically defective mutants of pea (Pisum sativum L.) by using immunogold localization with MAC265 an anti-AGPE monoclonal antibody. For mutants with defective growth of infection threads, the AGPE epitope was abundant in the extracellular matrix surrounding infected host cells in the central infected tissue of the nodule, as well as in the lumen of Rhizobiuminduced infection threads. This seems to indicate a mistargeting of AGPE as a consequence of abnormal growth of the infection threads. Furthermore, mutants in the gene sym33 showed reduced labeling with MAC265 and, in some infection threads and droplets, the label was completely absent, a phenomenon that is not observed in wild-type nodules. This suggests an alteration in the composition of the infection thread matrix for sym33 mutants, which may be correlated to the absence of endocytosis of rhizobia into the host cytoplasm.  相似文献   

15.
In legume–rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.  相似文献   

16.
The "symbiosome membrane" as defined by Roth et al. (1988) is a single, host-derived membrane that surrounds an endosymbiotic organism, separating it from the cytoplasm of the host cell. However, in the case of cnidarian-dinoflagellate endosymbioses, clear identification of the symbiosome membrane is complicated by the fact that each algal symbiont is surrounded by multiple layers of apparent membrane. The origin and molecular nature of these membranes has been the subject of considerable debate in the literature. Here we report the development of host-specific (G12) and symbiont-specific (PC3) monoclonal antibodies that allow separation of the host and symbiont components of these multiple membranes. Using immunocytochemistry at both the light and the electron microscopic level, we present data supporting the conclusion that the definitive symbiosome membrane is a single, host-derived membrane, whereas the remainder of the underlying apparent membranes surrounding the algal cell are symbiont-derived. The potential for macromolecules associated with these membranes to act as cellular signals critical to recruiting symbionts and maintaining established symbioses is discussed.  相似文献   

17.
Tick-borne flaviviruses (TBFV) are sustained in nature through cycling between mammalian and tick hosts. In this study, we used African green monkey kidney cells (Vero) and Ixodes scapularis tick cells (ISE6) to compare virus-induced changes in mammalian and arthropod cells. Using confocal microscopy, transmission electron microscopy (TEM), and electron tomography (ET), we examined viral protein distribution and the ultrastructural changes that occur during TBFV infection. Within host cells, flaviviruses cause complex rearrangement of cellular membranes for the purpose of virus replication. Virus infection was accompanied by a marked expansion in endoplasmic reticulum (ER) staining and markers for TBFV replication were localized mainly to the ER in both cell lines. TEM of Vero cells showed membrane-bound vesicles enclosed in a network of dilated, anastomosing ER cisternae. Virions were seen within the ER and were sometimes in paracrystalline arrays. Tubular structures or elongated vesicles were occasionally noted. In acutely and persistently infected ISE6 cells, membrane proliferation and vesicles were also noted; however, the extent of membrane expansion and the abundance of vesicles were lower and no viral particles were observed. Tubular profiles were far more prevalent in persistently infected ISE6 cells than in acutely infected cells. By ET, tubular profiles, in persistently infected tick cells, had a cross-sectional diameter of 60–100 nm, reached up to 800 nm in length, were closed at the ends, and were often arranged in fascicle-like bundles, shrouded with ER membrane. Our experiments provide analysis of viral protein localization within the context of both mammalian and arthropod cell lines as well as both acute and persistent arthropod cell infection. Additionally, we show for the first time 3D flavivirus infection in a vector cell line and the first ET of persistent flavivirus infection.  相似文献   

18.
Summary Based on a simulation model of the structure of and distribution of O2 within infected cells of soybean nodules, gradients of concentration of dissolved O2 ([O2]) have been calculated within and between symbiosomes embedded in host cytoplasm, through which the flux of O2 to the symbiosomes is facilitated by leghaemoglobin. As a consequence of facilitation, gradients of [O2] in cytoplasm between symbiosomes are very small. Within symbiosomes, from which leghaemoglobin is considered to be absent, respiration by bacteroids generates steeper gradients of [O2], thus restricting respiration and N2 fixation. However, if bacteroid mass is considered to be randomly distributed within a symbiosome, about 80% of this mass lies within about 0.6 m of the surface (the peribacteroid membrane). Consequently, respiration within a symbiosome was calculated to be between 65% and 92% of that attained if bacteroids were directly in contact with the cytoplasm. For N2 fixation, the corresponding values were 44% to 91%. In cytoplasm, near the surface of a symbiosome, there is a boundary layer in which equilibrium between O2, leghaemoglobin and oxyleghaemoglobin is perturbed by O2 consumption within. Calculations of the thickness of the boundary layers gave values of only 3.65 to 3.75×10–9 m, thus they had little effect on calculated gradients of [O2] in cytoplasm. In contrast, perturbations of the leghaemoglobin oxygenation equilibrium affected layers of cytoplasm beneath intercellular spaces to a depth of 0.15 to 0.3×10–6 m in the physiological range of volume average [O2]. This affected gradients of [O2] in the cytoplasm near intercellular spaces. Revisions have been made to the model cell, incorporating these new calculations. Results suggest that infected nodule cells may be able to withstand 1–2 M O2 in the outermost layers of cytoplasm without inhibition of N2 fixation caused by excessive O2 within the symbiosomes.Abbreviations Lb leghaemoglobin - LbO2 oxyleghaemoglobin - [O2] concentration of free, dissolved O2 - Y fractional oxygenation of Lb - Y av volume averagedY  相似文献   

19.
In Medicago truncatula nodules, the soil bacterium Sinorhizobium meliloti reduces atmospheric dinitrogen into nitrogenous compounds that the legume uses for its own growth. In nitrogen-fixing nodules, each infected cell contains symbiosomes, which include the rhizobial cell, the symbiosome membrane surrounding it, and the matrix between the bacterium and the symbiosome membrane, termed the symbiosome space. Here, we describe the localization of ENOD8, a nodule-specific esterase. The onset of ENOD8 expression occurs at 4 to 5 days postinoculation, before the genes that support the nitrogen fixation capabilities of the nodule. Expression of an ENOD8 promoter-gusA fusion in nodulated hairy roots of composite transformed M. truncatula plants indicated that ENOD8 is expressed from the proximal end of interzone II to III to the proximal end of the nodules. Confocal immunomicroscopy using an ENOD8-specific antibody showed that the ENOD8 protein was detected in the same zones. ENOD8 protein was localized in the symbiosome membrane or symbiosome space around the bacteroids in the infected nodule cells. Immunoblot analysis of fractionated symbiosomes strongly suggested that ENOD8 protein was found in the symbiosome membrane and symbiosome space, but not in the bacteroid. Determining the localization of ENOD8 protein in the symbiosome is a first step in understanding its role in symbiosome membrane and space during nodule formation and function.  相似文献   

20.
The formation and subsequent dissolution of a common bridge of cytoplasm between conjugating ciliated protozoan cells provides an excellent opportunity to follow the dynamics of the cellular membrane systems involved in this process. In particular, separation of conjugant partners offers the chance to observe, at a fixed site on the cell surface, how the ciliate surface complex of plasma and alveolar membranes (collectively termed the “pellicle”) is constructed. Consequently, cortical and cellular membranes of Euplotes aediculatus were studied by light and electron microscopy through the conjugation sequence. A conjugant fusion zone of shared cytoplasm elaborates between the partner cells within their respective oral fields (peristomes) to include microtubules, cytosol, and a concentrated endoplasmic reticulum (heavily stained by osmium impregnation techniques) that may also be continuous with cortical ER of each cell. Cortical membranes displacd by fusion are autolyzed in acid phosphatase-positive lysosomes in the fusion zone. As conjugants separate, expansion of the plasma membrane may occur through the fusion of vesicles with the plasma membrane, presumably at bare membrane, presumably at bare membrane patches near the fusion zone. The underlying cortical alveolar membranes and their plate-like contents are reconstructed beneath the plasma membrane, apparently by multiple fusions of dense-cored alveolar precursor vesicles (APVs). These precursor vesicles themselves appear to condense directly from the smooth ER present in the fusion zone. No Golgi apparatus was visible in the fusion zone cytoplasm, and no step of APV maturation that might involve the Golgi complex was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号