首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

2.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

3.
Simian virus 40 (SV40) large tumor antigen (T antigen), a phosphoprotein found in nuclei of SV40-infected and -transformed cells, binds nonspecifically to DNA. To study this mechanism the binding properties of T antigen to double-stranded (ds) and single-stranded (ss) DNA-cellulose as well as to phosphocellulose were compared. After incubation of [35S] methionine or [3H] leucine/[32 P] phosphate radioactively-labeled cell extracts at different pH values (6.0, 7.3, 9.0) with DNA- or phosphocellulose, bound and unbound species of T antigen were purified and analyzed by SDS-polyacrylamide gel electrophoresis for both the yield and the possible correlation with protein phosphorylation. T antigens bound with comparable affinities to ds- and ss-DNA-cellulose and phosphocellulose. These results suggest the binding of T antigen to the polyphosphate backbone of DNA as a molecular mechanism for its nonspecific binding. The evidence for this observation was supported by blocking the binding of T antigen to DNA-cellulose by divalent cations (Ca2+, Mg2+). 3H/32P ratios of T antigen obtained by double-labeling cells for various times imply that higher phosphorylated forms of T antigen bound more strongly to ds- and ss-DNA as well as to phosphocellulose. Thus, in the presence of cellular proteins and other components the binding activity of T antigen to the polyphosphate backbone of DNA seems to be positively correlated with its phosphorylation. These observations are consistent with the hypothesis that the binding affinities of SV40 T antigen to host cell DNA may be regulated by its phosphorylation.  相似文献   

4.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

5.
Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.  相似文献   

6.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

7.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

8.
The nuclear matrix plays an important role in simian virus 40 (SV40) DNA replication in vivo, since functional replication complexes containing large T and replicating SV40 minichromosomes are anchored to this structure (R. Schirmbeck and W. Deppert, J. Virol. 65:2578-2588, 1991). In the present study, we have analyzed the course of events leading from nuclear matrix-associated replicating SV40 minichromosomes to fully replicated minichromosomes and, further, to their encapsidation into mature SV40 virions. Pulse-chase experiments revealed that newly replicated SV40 minichromosomes accumulated at the nuclear matrix and were directly encapsidated into DNase-resistant SV40 virions at this nuclear structure. Alternatively, a small fraction of newly replicated minichromosomes left the nuclear matrix to associate with the cellular chromatin. During the course of infection, progeny virions continuously were released from the nuclear matrix to the cellular chromatin and into the cytoplasm-nucleoplasm. The bulk of SV40 progeny virions, however, remained at the nuclear matrix until virus-induced cell lysis.  相似文献   

9.
Chromosomes were prepared from mitotic munjac cells 48 to 72 h after infection with SV40 virus. When stained for SV40 T antigen by indirect immunofluorescence, all chromosomes within an infected cell were fluorescent, indicating the presence of T antigen. Furthermore, the chromosomes were not uniformly stained but appeared to have regions of high and low fluorescence intensity. A variety of controls showed that the banding patterns are specific and highly reproducible and may indeed reflect the binding sites of T antigen. The bright, fluorescent bands T antigen were found to correspond to bands visualized by trypsin-Giesma staining (G-bands) and also by quinacrine staining (Q-bands). Current knowledge of chromosome banding indicates that Q-bands reflect the distribution of AT-rich regions along the chromosome. From the DNA sequence of SV40, it is known that one of the T antigen binding sites contains AT-rich sequences; thus, T antigen banding might be due to the base-specific binding of T antigen to chromatin. In addition, these bands have been implicated as centers for chromosome condensation and units in control of DNA replication. While the functional significance of T antigen binding has yet to be determined, the SV40-muntjac system provides an unusual opportunity to study the interaction of a known regulatory protein with mammalian chromosomes.  相似文献   

10.
Hamelin C  Yaniv M 《Biochimie》1980,62(4):261-265
Simian virus 40 (SV40) nucleoprotein complexes extracted from nuclei of infected monkey cells (CV1) were precipitated with Ca2+, Mg2+, and Mn2+ divalent cations. Most of the viral chromatin but only a fraction of the proteins in the crude nuclear extracts were recovered after precipitation with 10 mM MgCl2. At this optimal concentration, DNA topoisomerase activity (nicking closing enzyme) coprecipitated with the SV40 nucleoprotein complexes.  相似文献   

11.
The structure of simian virus 40 (SV40) chromatin was probed by treatment with single- and multiple-site bacterial restriction endonucleases. Approximately the same fraction of the chromatin DNA was cleaved by each of three different single-site endonucleases, indicating that the nucleosomes do not have unique positions with regard to specific nucleotide sequences within the population of chromatin molecules. However, the extent of digestion was found to be strongly influenced by salt concentration. At 100 mM NaCl-5 mM MgCl2, only about 20% of the simian virus 40 (SV40) DNA I in chromatin was converted to linear SV40 DNA III. In contrast, at lower concentrations of NaCl (0.05 or 0.01 M), an additional 20 to 30% of the DNA was cleaved. These results suggest that at 100 mM NaCl only the DNA between nucleosomes was accessible to the restriction enzymes, whereas at the lower salt concentrations, DNA within the nucleosome regions became available for cleavage. Surprisingly, when SV40 chromatin was digested with multiple-site restriction enzymes, less than 2% of the DNA was digested to limit digest fragment, whereas only a small fraction (9 to 15%) received two or more cuts. Instead, the principal digest fragment was full-length linear SV40 DNA III. The failure to generate limit digest fragments was not a consequence of reduced enzyme activity in the reaction mixtures or of histone exchange. When the position of the principal cleavage site was mapped after HpaI digestion, it was found that this site was not unique. Nevertheless, all sites wree not cleaved with equal probability. An additional finding was that SV40 chromatin containing nicked-circular DNA II produced by random nicking of DNA I was also resistant to digestion by restriction enzymes. These results suggest that the initial cut which causes relaxation of topological constraint in SV40 chromatin DNA imparts resistance to further digestion by restriction enzymes. We propose that this may be accomplished by either "winding" of the internucleosomal DNA into the body of the nucleosome, or as suggested by others, by successive right-hand rotation of nucleosomes.  相似文献   

12.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

13.
14.
15.
The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.  相似文献   

16.
Intracellular simian virus 40 (SV40) chromatin was photoreacted with a 3H-labeled psoralen derivative, hydroxymethyltrimethylpsoralen (HMT), at 48 h postinfection. Psoralen compounds have been shown to readily penetrate intact cells and, in the presence of long-wavelength UV light, form covalent adducts to DNA, preferentially at regions unprotected by nucleosomes. The average distribution pattern of [3H]HMT on the SV40 genome was determined by specific activity measurements of the DNA fragments generated by HindIII plus HpaII or by AtuI restriction enzyme digestion. At levels of 1 to 10 [3H]HMT photoadducts per SV40 molecule, the radiolabel was found to be distributed nonrandomly. Comparison of the labeling pattern in vivo with that of purified SV40 DNA labeled in vitro revealed one major difference. A region of approximately 400 base pairs, located between 0.65 and 0.73 on the physical map, was preferentially labeled under in vivo conditions. This finding strongly suggests that the highly accessible region near the origin of replication, previously observed on isolated SV40 "minichromosomes," exists on SV40 chromatin in vivo during a lytic infection.  相似文献   

17.
18.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

19.
Pulse-labeled simian virus 40 (SV40) chromatin as well as uniformly labeled viral chromatin are immunoprecipitable by an SV40-specific tumor antiserum and therefore contain bound tumor antigen (T antigen). Single-stranded calf thymus DNA, immobilized on cellulose, competes effectively for T antigen binding with uniformly labeled nonreplicating, but not with pulse-labeled replicating, chromatin. Furthermore, T antigen dissociates in 0.5 M NaCl from nonreplicating chromatin and from purified SV40 DNA, whereas most T antigen remains associated with replicating chromatin even in the presence of 1.2 to 1.5 M NaCl. We used filtration through DNA-cellulose columns and treatment with high salt to prepare pulse-labeled immunoreactive viral chromatin. The viral DNA was digested before, and in other experiments after, immunoprecipitation with the restriction endonuclease HindIII. We found that SV40 DNA sequences, most probably representing the entire genome, remain in the immunoprecipitate after HindIII digestion, indicating an association of T antigen with origin-distal sections of replicating viral DNA. The results suggest that T antigen in replicating chromatin may be bound to regions close to replicating points. We performed control experiments with in vitro-formed complexes of T antigen and SV40 DNA. When these complexes were immunoprecipitated and HindIII digested we found, in agreement with previous studies, that only the origin containing the HindIII C fragment carried bound T antigen.  相似文献   

20.
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号