首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves. To explore this issue, we examined the age distribution of antimicrobial drug-resistant E. coli from Holstein cattle at a local dairy and conducted an experiment to determine if low doses of oxytetracycline affected the prevalence of antimicrobial drug-resistant E. coli. Isolates resistant to tetracycline (>4 microg/ml) were more prevalent in <3-month-old calves (79%) compared with lactating cows (14%). In an experimental trial where calves received diets supplemented with or without oxytetracycline, the prevalence of tetracycline-resistant E. coli was slightly higher for the latter group (P = 0.039), indicating that drug use was not required to maintain a high prevalence of resistant E. coli. The most common resistance pattern among calf E. coli isolates included resistance to streptomycin (>12 microg/ml), sulfadiazine (>512 microg/ml), and tetracycline (>4 microg/ml) (SSuT), and this resistance pattern was most prevalent during the period when calves were on milk diets. To determine if prevalence was a function of differential fitness, we orally inoculated animals with nalidixic acid-resistant strains of SSuT E. coli and susceptible E. coli. Shedding of SSuT E. coli was significantly greater than that of susceptible strains in neonatal calves (P < 0.001), whereas there was no difference in older animals (P = 0.5). These data support the hypothesis that active selection for traits linked to the SSuT phenotype are responsible for maintaining drug-resistant E. coli in this population of dairy calves.  相似文献   

2.
Healthy calves (n = 96, 1 to 9 weeks old) from a dairy herd in central Pennsylvania were examined each month over a five-month period for fecal shedding of ceftiofur-resistant gram-negative bacteria. Ceftiofur-resistant Escherichia coli isolates (n = 122) were characterized by antimicrobial resistance (disk diffusion and MIC), serotype, pulsed-field gel electrophoresis subtypes, beta-lactamase genes, and virulence genes. Antibiotic disk diffusion assays showed that the isolates were resistant to ampicillin (100%), ceftiofur (100%), chloramphenicol (94%), florfenicol (93%), gentamicin (89%), spectinomycin (72%), tetracycline (98%), ticarcillin (99%), and ticarcillin-clavulanic acid (99%). All isolates were multidrug resistant and displayed elevated MICs. The E. coli isolates belonged to 42 serotypes, of which O8:H25 was the predominant serotype (49.2%). Pulsed-field gel electrophoresis classified the E. coli isolates into 27 profiles. Cluster analysis showed that 77 isolates (63.1%) belonged to one unique group. The prevalence of pathogenic E. coli was low (8%). A total of 117 ceftiofur-resistant E. coli isolates (96%) possessed the bla(CMY2) gene. Based on phenotypic and genotypic characterization, the ceftiofur-resistant E. coli isolates belonged to 59 clonal types. There was no significant relationship between calf age and clonal type. The findings of this study revealed that healthy dairy calves were rapidly colonized by antibiotic-resistant strains of E. coli shortly after birth. The high prevalence of multidrug-resistant nonpathogenic E. coli in calves could be a significant source of resistance genes to other bacteria that share the same environment.  相似文献   

3.
Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.  相似文献   

4.
The ecology of Escherichia coli in market calves fed a milk-substitute diet   总被引:1,自引:0,他引:1  
Dynamic changes in the Escherichia coli population in the calf gut were studied over 21 days in a group of 18 intensively-reared market calves. Isolates were identified by O-serogrouping, biotyping and resistogram patterns. Seventy O-serogroups were identified among nearly 3000 E. coli isolates examined and these were subdivided into 416 strains by means of their biotype and resistogram. Seventy-five per cent of these strains were detected only once or twice, which points to the continual replacement of the E. coli flora with strains that showed low persistence in the gut. The rise in the frequency of antibiotic resistance observed during the study was not due to a change in the proportion of resistant to sensitive strains in the gut flora. It was a consequence of the displacement of the original flora by multiply-resistant strains, which presumably originated from the calves' environment.  相似文献   

5.
The ecology of Escherichia coli in market calves fed a milk-substitute diet   总被引:4,自引:2,他引:2  
Dynamic changes in the Escherichia coli population in the calf gut were studied over 21 days in a group of 18 intensively-reared market calves. Isolates were identified by O-serogrouping, biotyping and resistogram patterns. Seventy O-serogroups were identified among nearly 3000 E. coli isolates examined and these were subdivided into 416 strains by means of their biotype and resistogram. Seventy-five per cent of these strains were detected only once or twice, which points to the continual replacement of the E. coli flora with strains that showed low persistence in the gut. The rise in the frequency of antibiotic resistance observed during the study was not due to a change in the proportion of resistant to sensitive strains in the gut flora. It was a consequence of the displacement of the original flora by multiply-resistant strains, which presumably originated from the calves' environment.  相似文献   

6.
The ecology of Escherichia coli in calves reared as dairy-cow replacements   总被引:6,自引:4,他引:2  
A continual turn-over in the strains forming the majority of faecal Escherichia coli flora was demonstrated in 16 calves reared as dairy cow replacements. The incidence of antibiotic resistance among isolates, as measured by an Antibiotic Resistance Index (ARI), changed markedly with the age of the calf. The value was low initially, when the calves were 1–2 days old and housed with adult animals. It then rose rapidly during the first week after the animals had been weaned and moved into nursery pens. This change in ARI was associated with the isolation of strains resistant to four or five of the six drugs included in the sensitivity test. The ARI then fell from the third week to low levels by the time that the calves were five months of age. This fall was due to the isolation of an increasing proportion of sensitive E. coli strains. These differed from the sensitive strains which had colonized the calves in the early days of life so demonstrating that the change was not due to the reemergence of strains identified several weeks previously. The source of E. coli strains was presumed to be the calfs' environment but further investigations are required to prove this conclusively.  相似文献   

7.
We examined how a dietary supplement affects the prevalence of antibiotic-resistant Escherichia coli on a dairy farm in Washington State. Between 2001 and 2004 the prevalence of fecal E. coli strains resistant to streptomycin, sulfadiazine, and tetracycline (SSuT strains) declined from 59.2% to 26.1% in the calf population. In 2003 the dairy discontinued use of a dietary supplement, and we hypothesized that the decline in prevalence of SSuT strains was related to this change in management. To test this we established three treatments in which calves received no supplement, the dietary supplement with oxytetracycline, or the dietary supplement without oxytetracycline. Calves receiving either dietary supplement had a significantly higher prevalence of SSuT E. coli than the no-supplement control group (approximately 37% versus 20%, respectively; P = 0.03). Importantly, there was no evidence that oxytetracycline contributed to an increased prevalence of fecal SSuT E. coli. We compared the growth characteristics of SSuT and non-SSuT E. coli in LB broth enriched with either the complete dietary supplement or its individual constituents. Both the complete dietary supplement and its vitamin D component supported a significantly higher cell density of SSuT strains (P = 0.003 and P = 0.001, respectively). The dry milk and vitamin A components of the dietary supplement did not support different cell densities. These results were consistent with selection and maintenance of SSuT E. coli due to environmental components independent of antibiotic selection.  相似文献   

8.
Seven phages highly active in vitro and in vivo against one or other of seven bovine enteropathogenic strains of Escherichia coli belonging to six different serotypes were isolated from sewage. Severe experimentally induced E. coli diarrhoea in calves could be cured by a single dose of 10(5) phage organisms. It could be prevented by doses as low as 10(2), by spraying the litter in the calf rooms with aqueous phage suspensions or simply by keeping the calves in uncleaned rooms previously occupied by calves whose E. coli infections had been treated with phage. Microbiological examinations of calves used in these experiments revealed that the phage organisms multiplied rapidly and profusely after gaining entry to the E. coli-infected small intestine, quickly reducing the E. coli to numbers that were virtually harmless. The only phage-resistant E. coli that emerged in the studies on calves infected with one or other of the seven E. coli strains were K-. These organisms were much less virulent than the K+ organisms from which they were derived and did not present a serious problem in calves given adequate amounts of colostrum. Infections produced by oral inoculation of a mixture of six strains of the E. coli could be controlled by administration of a pool of the six phages that were active against them but, in general, the control was less complete than that observed in the single-strain infections. K+ phage-resistant bacteria emerged in some of the calves used in these mixed infections and they were as virulent as their parent organisms; evidence from in vitro studies suggested that they might have arisen by genetic transfer between organisms of the different infecting strains. Infections produced by these K+ mutants and their parents could be controlled by the use of mutant phages derived from phages that were active on their parents. During the experiments with mixed E. coli infection, an extraneous phage active against one of the six E. coli strains suddenly appeared in calves kept in the same rooms. Microbiological examinations revealed that this phage was effectively controlling the multiplication of organisms of that particular strain of E. coli in the small intestines of the calves.  相似文献   

9.
A mixture of two phages, B44/1 and B44/2, protected calves against a potentially lethal oral infection with an O9:K30,99 enteropathogenic strain of Escherichia coli, called B44, when given before, but not after, the onset of diarrhoea; a mixture in which phage B44/3 was replaced by phage B44/3 was effective after the onset of diarrhoea. Calves that responded to phage treatment had much lower numbers of E. coli B44 in their alimentary tract than untreated calves. Usually, high numbers of phage B44/1 and rather lower numbers of phage B44/2 or B44/3 were present in the alimentary tract of these animals. At death, most calves that had not responded to treatment with phages B44/1 and B44/2 had high numbers of mutants of E. coli B44 resistant to phage B44/1 in their small intestine. Phage-treated calves that survived E. coli infection continued to excrete phage in their faeces, at least until the numbers of E. coli B44 also excreted were low. The phages survived longer than E. coli B44 in faecal samples taken from phage-treated calves and exposed to the atmosphere in an unheated animal house. Calves inoculated orally with faecal samples from phage-treated calves that contained sufficient E. coli B44 to cause a lethal infection remained healthy. A mixture of two phages, P433/1 and P433/2, and phage P433/1 alone cured diarrhoea in piglets caused by an O20:K101,987P strain of E. coli called P433. The numbers of the infecting bacteria and phages in the alimentary tract of the piglets resembled those in the calves. Another phage given to lambs 8 h after they were infected with an O8:K85,99 enteropathogenic strain of E. coli, called S13, reduced the numbers of these organisms in the alimentary tract and had an ameliorating effect on the course of the disease. No phage-resistant mutants of E. coli S13 were isolated from the lambs. The only mutants of E. coli B44 and P433 that emerged in the calves and piglets were K30- or K101- and resistant to phage B44/1 or P433/1 respectively; those tested were much less virulent than their parent strains.  相似文献   

10.
The faecal excretion of E. coli from 6 adult cows was followed over a period of 105 days. E. coli were excreted in only 23·4% of specimens and the patterns of excretion varied between animals. All isolates of E. coli were antibiotic sensitive and fell into 6 O-antigen types; very few were non-typeable. The O-types excreted by each animal, compared with those from other cows in the same house, were traced with time. A similar but less intense study was undertaken in 8 calves. In contrast E. coli was excreted from all samples and included both antibiotic sensitive and resistant strains; 37 O-types were represented. The persistence of specific O-types within each calf and their spread to other calves in the same house were studied. A comparison of the O-types in the bovine species with those isolated from man has been made.  相似文献   

11.
This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are tested for their susceptibility by replica plating.  相似文献   

12.
AIMS: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) in calves and lambs with diarrhoea in India. METHODS AND RESULTS: Faecal samples originating from 391 calves and 101 lambs which had diarrhoea were screened for presence of E. coli. A total number of 309 (249 bovine and 60 ovine) E. coli strains were isolated. A total of 113 bovine and 15 ovine strains were subjected to multiplex polymerase chain reaction (m-PCR) for detection of stx1, stx2, eaeA and EHEC hlyA genes. STEC and EPEC belonging to different serogpoups were detected in 9.73% of calves studied. Six per cent and 26.66% of lambs studied were carrying STEC and EPEC, respectively. Majority of the STEC serogroups isolated in this study did not belong to those which have been identified earlier to be associated mainly with diarrhoea and enteritis in cattle and sheep outside India. The most frequent serogroup among bovine and ovine EPEC was O26 (40%). One of the most important STEC serogroup O157, known for certain life-threatening infections in humans, was isolated from both bovine and ovine faecal samples. CONCLUSIONS: A high percentage of STEC and EPEC belonging to different serogroups are prevalent in calves and lambs with diarrhoea in India and could be the cause of disease in them. SIGNIFICANCE AND IMPACT OF THE STUDY: The study reports, for the first time, the isolation and characterization of STEC and EPEC serogroups associated with diarrhoea in calves and lambs in India. Many STEC and EPEC strains belonged to serogoups known for certain life-threatening diseases in humans.  相似文献   

13.
The presence of ampicillin-resistant Escherichia coli (Amp(r) E. coli) in the fecal flora of calves was monitored on a monthly basis in seven cohorts of calves. Calves were rapidly colonized by Amp(r) E. coli, with peak prevalence in cohort calves observed in the 4 months after the calves were born. The prevalence of calves yielding Amp(r) E. coli in cohorts consistently declined to low levels with increasing age of the calves (P < 0.001).  相似文献   

14.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms.  相似文献   

15.
The prevalence of eae-positive Escherichia coli (eaeEC) in Japan was examined using rectal stool samples taken from 35 calves less than 1 month old, 107 calves more than 1 to 3 months old, 88 heifers more than 3 to 6 months old, 214 heifers over 6 months old, and cows from 95 farms. Screening with eae PCR revealed the prevalence to be, with increasing age, 31.4, 8.4, 26.1, and 14.5%, respectively. Of 51 selected eaeEC strains, more than 40% were serotyped as O26, O103, O111, O145, or O157, which are frequently detected as enterohemorrhagic E. coli types. Four strains were identified as recently reported intimin types eta, iota, and kappa.  相似文献   

16.
The paper describes the prevalence of resistant strains within the genetic structure of E. coli (phylogenetic group A, B1, B2 and D). A total of 200 commensal E. coli strains have been derived from 10 species of healthy animals residing on ZOO Safari Park area, in Swierkocin, Poland. The phylogenetic structure of E. coli has been analysed with the use of a PCR-based method. The strains were tested in terms of their susceptibility to eight classes of antibiotics: aminoglycosides, penicillins, cephalosporins, tetracyclines, nitrofurans, sulphonamides, phinicols, and quinolones. The genetic structure of E. coli revealed a not uniform distribution of strains among the four phylogenetic groups with significantly numerous representation of groups A and B1. Resistant E. coli were found within each of the phylogenetic groups. Strains resistant to one class of antibiotics occurred significantly more frequently in phylogenetic groups B2 and D (potential pathogens), whereas strains resistant to more than one class of antibiotics belonged to phylogenetic groups A and B1 (typical commensals) in a prevailing number of cases.  相似文献   

17.
This study was performed to prove that intestinal colonization in chickens by resistant Escherichia coli strains present in the environment might be prevented when faeces in which sensitive E. coli strains were dominant was administered to newly hatched chicks. The appearance of resistant E. coli strains was markedly reduced. Escherichia coli O49:H12 was the sensitive E. coli strain which formed the major colonizer in the intestinal tract. In young chickens, this strain persisted as a major component, and even when it was a minor colonizer in the faecal fluid administered, it appeared as a major component soon afterwards. This strain is considered to be a good colonizer in the gut of young chickens.  相似文献   

18.
This study was performed to prove that intestinal colonization in chickens by resistant Escherichia coli strains present in the environment might be prevented when faeces in which sensitive E. coli strains were dominant was administered to newly hatched chicks. The appearance of resistant E. coli strains was markedly reduced. Escherichia coli O49:H12 was the sensitive E. coli strain which formed the major colonizer in the intestinal tract. In young chickens, this strain persisted as a major component, and even when it was a minor colonizer in the faecal fluid administered, it appeared as a major component soon afterwards. This strain is considered to be a good colonizer in the gut of young chickens.  相似文献   

19.
The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves. To explore this issue, we examined the age distribution of antimicrobial drug-resistant E. coli from Holstein cattle at a local dairy and conducted an experiment to determine if low doses of oxytetracycline affected the prevalence of antimicrobial drug-resistant E. coli. Isolates resistant to tetracycline (>4 μg/ml) were more prevalent in <3-month-old calves (79%) compared with lactating cows (14%). In an experimental trial where calves received diets supplemented with or without oxytetracycline, the prevalence of tetracycline-resistant E. coli was slightly higher for the latter group (P = 0.039), indicating that drug use was not required to maintain a high prevalence of resistant E. coli. The most common resistance pattern among calf E. coli isolates included resistance to streptomycin (>12 μg/ml), sulfadiazine (>512 μg/ml), and tetracycline (>4 μg/ml) (SSuT), and this resistance pattern was most prevalent during the period when calves were on milk diets. To determine if prevalence was a function of differential fitness, we orally inoculated animals with nalidixic acid-resistant strains of SSuT E. coli and susceptible E. coli. Shedding of SSuT E. coli was significantly greater than that of susceptible strains in neonatal calves (P < 0.001), whereas there was no difference in older animals (P = 0.5). These data support the hypothesis that active selection for traits linked to the SSuT phenotype are responsible for maintaining drug-resistant E. coli in this population of dairy calves.  相似文献   

20.
In the first part of the present study the coliform and enteric bacilli in the environment of calves with colibacillosis were examined. The occurrence, number, and pathogenic properties of Escherichia coli in barnyard soils were obtained from six cattle ranches. The O and K serogroups of E. coli isolates obtained from the feces of calves with colibacillosis born at these cattle ranches were determined, and their serotypes were compared with the E. coli O and K serotypes found in soils. The results showed a reservoir of potentially pathogenic E. coli in barnyard soils contaminated with bovine feces. For the second part of this study, 6 healthy calves and 51 calves with colibacillosis were studied. The numbers of total aerobic heterotrophic bacteria, total streptococci, fecal streptococci, total coliforms, and fecal coliforms in the feces of calves were determined. In addition, coliform and enteric bacilli from the feces of both healthy and diseased calves were identified, and their indole, methyl red, Voges-Proskauer, citrate (IMViC) types were described. In parallel, the IMViC types of coliform and enteric bacilli isolated from barnyard soils previously contaminated with bovine feces were compared with those isolated from uncontaminated soils. All fecal specimens were also examined for the presence of rotavirus. No significant effect on the numbers of the bacterial types was found. The results suggest that the predominant IMViC types found in the feces of calves with colibacillosis originate from the soil. From this study it is apparent that the occurrence, number, and survival of E. coli in barnyard soils is related to ranch husbandry and sanitary practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号