首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

2.
Binding of the macrophage lectin mincle to trehalose dimycolate, a key glycolipid virulence factor on the surface of Mycobacterium tuberculosis and Mycobacterium bovis, initiates responses that can lead both to toxicity and to protection of these pathogens from destruction. Crystallographic structural analysis, site-directed mutagenesis, and binding studies with glycolipid mimics have been used to define an extended binding site in the C-type carbohydrate recognition domain (CRD) of bovine mincle that encompasses both the headgroup and a portion of the attached acyl chains. One glucose residue of the trehalose Glcα1–1Glcα headgroup is liganded to a Ca2+ in a manner common to many C-type CRDs, whereas the second glucose residue is accommodated in a novel secondary binding site. The additional contacts in the secondary site lead to a 36-fold higher affinity for trehalose compared with glucose. An adjacent hydrophobic groove, not seen in other C-type CRDs, provides a docking site for one of the acyl chains attached to the trehalose, which can be targeted with small molecule analogs of trehalose dimycolate that bind with 52-fold higher affinity than trehalose. The data demonstrate how mincle bridges between the surfaces of the macrophage and the mycobacterium and suggest the possibility of disrupting this interaction. In addition, the results may provide a basis for design of adjuvants that mimic the ability of mycobacteria to stimulate a response to immunization that can be employed in vaccine development.  相似文献   

3.
A bacterial glucoamylase was purified from the anaerobic thermophilic bacterium Clostridium thermosaccharolyticum and characterized. The enzyme, which was purified 63-fold, with a yield of 36%, consisted of a single subunit with an apparent molecular mass of 75 kDa. The purified enzyme was able to attack α-1,4- and α-1,6-glycosidic linkages in various α-glucans, liberating glucose with a β-anomeric configuration. The purified glucoamylase, which was optimally active at 70°C and pH 5.0, attacked preferentially polysaccharides such as starch, glycogen, amylopectin, and maltodextrin. The velocity of oligosaccharide hydrolysis decreased with a decrease in the size of the substrate. The Km values for starch and maltose were 18 mg/ml and 20 mM, respectively. Enzyme activity was not significantly influenced by Ca2+, EDTA, or α- or β-cyclodextrins.  相似文献   

4.
On the basis of the results outlined in our previous report, bacterial sialyltransferases (ST) from marine sources were further characterized using glycosphingolipids (GSL), especially ganglio-series GSLs, based on the enzymatic characteristics and kinetic parameters obtained by Line weaver-Burk plots. Among them, GA1 and GA2 were found to be good substrates for these unique STs. Thus, new gangliosides synthesized by α2-3 and α2-6STs were structurally characterized by several analytical procedures. The ganglioside generated by the catalytic activity of α2-3ST was identified as GM1b. On the other hand, when enzyme reactions by α2-6STs were performed using substrates GA2 and GA1, very unique gangliosides were generated. The structures were identified as NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer and NeuAcα2-6Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-Cer, respectively. The synthesized ganglioside NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer showed binding activity to the influenza A virus {A/Panama/2007/99 (H3N2)} at a similar level to purified sialyl(α2-3)paragloboside (S2-3PG) and sialyl(α2-6)paragloboside (S2-6PG) from mammalian sources. The evidence suggests that these STs have unique features, including substrate specificities restricted not only to lacto-series but also to ganglio-series GSLs, as well as catalytic potentials for ganglioside synthesis. This evidence demonstrates that effective in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing sialic acid (Sia) modifications, thereby preparing large-scale gangliosides and permitting the exploration of unknown functions.  相似文献   

5.
The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4''s cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-β-d-glucoside (pNPGlc) efficiently (k cat/K m  =  17.9 mM−1·s−1), and hydrolyzes pNP-β-d-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed β-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2–3, and β-(1,4)-linked oligosaccharide of DP 3–4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-β-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis.  相似文献   

6.
β-Fructosidases are a widespread group of enzymes that catalyze the hydrolysis of terminal fructosyl units from various substrates. These enzymes also exhibit transglycosylation activity when they function with high concentrations of sucrose, which is used to synthesize fructooligosaccharides (FOS) in the food industry. A β-fructosidase (BfrA) with high transglycosylation activity was purified from Aspergillus oryzae FS4 as a monomeric glycoprotein. Compared with the most extensively studied Aspergillus spp. fructosidases that synthesize inulin-type β-(2-1)-linked FOS, BfrA has unique transfructosylating property of synthesizing levan- and neolevan-type β-(2-6)-linked FOS. The coding sequence (bfrAFS4, 1.86 kb) of BfrA was amplified and expressed in Escherichia coli and Pichia pastoris. Both native and recombinant proteins showed transfructosylation and hydrolyzation activities with broad substrate specificity. These proteins could hydrolyze the following linkages: Glc α-1, 2-β Fru; Glc α-1, 3-α Fru; and Glc α-1, 5-β Fru. Compared with the unglycosylated E. coli-expressed BfrA (E.BfrA), the N-glycosylated native (N.BfrA) and the P. pastoris-expressed BfrA (P.BfrA) were highly stable at a wide pH range (pH 4 to 11), and significantly more thermostable at temperatures up to 50°C with a maximum activity at 55°C. Using sucrose as substrate, the Km and kcat values for total activity were 37.19±5.28 mM and 1.0016±0.039×104 s−1 for N.BfrA. Moreover, 10 of 13 putative N-glycosylation sites were glycosylated on N.BfrA, and N-glycosylation was essential for enzyme thermal stability and optima activity. Thus, BfrA has demonstrated as a well-characterized A. oryzae fructosidase with unique transfructosylating capability of synthesizing levan- and neolevan-type FOS.  相似文献   

7.
Priem B  Gross KC 《Plant physiology》1992,98(1):399-401
The oligosaccharide glycans mannosylα1-6(mannosylα1-3)mannosylα1-6(mannosylα1-3) mannosylβ1-4-N-acetylglucosamine and mannosylα1-6(mannosylα1-3)(xylosylβ1-2) mannosylβ1-4-N-acetylglucosaminyl(fucosylα1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production.  相似文献   

8.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

9.
The animal pathogen Brucella abortus contains a gene, cgs, that complemented a Rhizobium meliloti nodule development (ndvB) mutant and an Agrobacterium tumefaciens chromosomal virulence (chvB) mutant. The complemented strains recovered the synthesis of cyclic β(1-2) glucan, motility, virulence in A. tumefaciens, and nitrogen fixation in R. meliloti; all traits were strictly associated with the presence of an active cyclic β(1-2) glucan synthetase protein in the membranes. Nucleotide sequencing revealed the presence in B. abortus of an 8.49-kb open reading frame coding for a predicted membrane protein of 2,831 amino acids (316.2 kDa) and with 51% identity to R. meliloti NdvB. Four regions of the B. abortus protein spanning amino acids 520 to 800, 1025 to 1124, 1284 to 1526, and 2400 to 2660 displayed similarities of higher than 80% with R. meliloti NdvB. Tn3-HoHo1 mutagenesis showed that the C-terminal 825 amino acids of the Brucella protein, although highly conserved in Rhizobium, are not necessary for cyclic β(1-2) glucan synthesis. Confirmation of the identity of this protein as B. abortus cyclic β(1-2) glucan synthetase was done by the construction of a B. abortus Tn3-HoHo1 insertion mutant that does not form cyclic β(1-2) glucan and lacks the 316.2-kDa membrane protein. The recovery of this mutant from the spleens of inoculated mice was decreased by 3 orders of magnitude compared with that of the parental strain; this result suggests that cyclic β(1-2) glucan may be a virulence factor in Brucella infection.  相似文献   

10.
trans-Sialidase (TS) enzymes catalyze the transfer of sialyl (Sia) residues from Sia(α2-3)Gal(β1-x)-glycans (sialo-glycans) to Gal(β1-x)-glycans (asialo-glycans). Aiming to apply this concept for the sialylation of linear and branched (Gal)nGlc oligosaccharide mixtures (GOS) using bovine κ-casein-derived glycomacropeptide (GMP) as the sialic acid donor, a kinetic study has been carried out with three components of GOS, i.e., 3′-galactosyl-lactose (β3′-GL), 4′-galactosyl-lactose (β4′-GL), and 6′-galactosyl-lactose (β6′-GL). This prebiotic GOS is prepared from lactose by incubation with suitable β-galactosidases, whereas GMP is a side-stream product of the dairy industry. The trans-sialidase from Trypanosoma cruzi (TcTS) was expressed in Escherichia coli and purified. Its temperature and pH optima were determined to be 25°C and pH 5.0, respectively. GMP [sialic acid content, 3.6% (wt/wt); N-acetylneuraminic acid (Neu5Ac), >99%; (α2-3)-linked Neu5Ac, 59%] was found to be an efficient sialyl donor, and up to 95% of the (α2-3)-linked Neu5Ac could be transferred to lactose when a 10-fold excess of this acceptor substrate was used. The products of the TcTS-catalyzed sialylation of β3′-GL, β4′-GL, and β6′-GL, using GMP as the sialic acid donor, were purified, and their structures were elucidated by nuclear magnetic resonance spectroscopy. Monosialylated β3′-GL and β4′-GL contained Neu5Ac connected to the terminal Gal residue; however, in the case of β6′-GL, TcTS was shown to sialylate the 3 position of both the internal and terminal Gal moieties, yielding two different monosialylated products and a disialylated structure. Kinetic analyses showed that TcTS had higher affinity for the GL substrates than lactose, while the Vmax and kcat values were higher in the case of lactose.  相似文献   

11.
In this article, we provide evidence for the presence of diglyceride kinase activity in cell extracts of Rhizobium meliloti 1021. Characterization of the rhizobial enzyme revealed that it shares many properties with the diglyceride kinase of Escherichia coli. A possible role for this enzyme during cyclic β-1,2-glucan biosynthesis is discussed.  相似文献   

12.
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme.  相似文献   

13.
The frequency of Escherichia coli infection has lead to concerns over pathogenic bacteria in our food supply and a demand for therapeutics. Glycolipids on gut cells serve as receptors for the Shiga-like toxin produced by E. coli. Oligosaccharide moiety analogues of these glycolipids can compete with receptors for the toxin, thus acting as antibacterials. An enzymatic synthesis of the P1 trisaccharide (Galα1,4Galβ1,4GlcNAc), one of the oligosaccharide analogues, was assessed in this study. In the proposed synthetic pathway, UDP-glucose was generated from sucrose with an Anabaena sp. sucrose synthase and then converted with an E. coli UDP-glucose 4-epimerase to UDP-galactose. Two molecules of galactose were linked to N-acetylglucosamine subsequently with a Helicobacter pylori β-l,4-galactosyltransferase and a Neisseria meningitidis α-1,4-galactosyltransferase to produce one molecule of P1 trisaccharide. The four enzymes were coexpressed in a single genetically engineered E. coli strain that was then permeabilized and used to catalyze the enzymatic reaction. P1 trisaccharide was accumulated up to 50 mM (5.4 g in a 200-ml reaction volume), with a 67% yield based on the consumption of N-acetylglucosamine. This study provides an efficient approach for the preparative-scale synthesis of P1 trisaccharide with recombinant bacteria.  相似文献   

14.
A glucosyl and a glucosyl-glucan transferase activity from spinach (Spinacia oleracea L. var. Matador) leaves have been partially purified and characterized. The latter activity (fraction 1 after diethylaminoethylcellulose chromatography) is responsible for the transfer of glucosyl as well as of maltosyl, maltotriosyl, and higher homologous residues to glucose giving rise to maltose and the correspondingly larger molecules. This fraction also shows β-amylase activity. The transfer takes place only to glucose; maltose, as well as other α-1,4-glucans, serve as donors. The enzyme fraction 2 is amylase-free and catalyzes only the transfer of glucosyl moieties, again with high acceptor specificity to glucose. Maltose and larger α-1, 4-glucans, with the exception of maltotriose and maltotetraose, act as donors. The physiological function of these enzymes may be the formation of oligosaccharide primers for starch synthetase or phosphorylase.  相似文献   

15.
A cellulase gene of Clostridium thermocellum was transferred to Escherichia coli by molecular cloning with bacteriophage lambda and plasmid vectors and shown to be indentical with the celA gene. The celA gene product was purified from extracts of plasmid-bearing E. coli cells by heat treatment and chromatography on DEAE-Trisacryl. It was characterized as a thermophilic endo-β-1,4-glucanase, the properties of which closely resemble those of endoglucanase A previously isolated from C. thermocellum supernatants. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme purified from E. coli exhibited two protein bands with molecular weights of 49,000 and 52,000. It had a temperature optimum at 75°C and was stable for several hours at 60°C. Endoglucanase activity was optimal between pH 5.5 and 6.5. The enzyme was insensitive against end product inhibition by glucose and cellobiose and remarkably resistant to the denaturing effects of detergents and organic solvents. It was capable of degrading, in addition to cellulosic substrates, glucans with alternating β-1,4 and β-1,3 linkages such as barley β-glucan and lichenan.  相似文献   

16.
1. Lipids were extracted from five strains of Propionibacterium with chloroform–methanol mixtures and fractionated by chromatography on silicic acid. 2. All five extracts contained a glycolipid composed of fatty acids, inositol and mannose in the molar proportions 2:1:1. 3. Hydrolysis of the glycolipid with alkali gave a mixture of fatty acids and O-α-d-mannopyranosyl-(1→2)-myoinositol. 4. Analysis of the fatty acids by g.l.c. showed that they were predominantly straight- and branched-chain isomers of pentadecanoic acid and heptadecanoic acid. 5. The location and distribution of the fatty acid residues in the molecule was established by periodate oxidation studies and mass spectrometry. The structure of the major glycolipid is 1-O-pentadecanoyl-2-O-(6-O-heptadecanoyl-α-d-mannopyranosyl)myoinositol. 6. The glycolipids are located in the membrane; the cell walls are devoid of lipid. 7. Possible functions of the glycolipid are discussed.  相似文献   

17.
The β(1-3)glucanosyltransferase GEL family of Aspergillus fumigatus contains 7 genes, among which only 3 are expressed during mycelial growth. The role of the GEL4 gene was investigated in this study. Like the other Gelps, it encodes a glycosylphosphatidylinositol (GPI)-anchored protein. In contrast to the other β(1-3)glucanosyltransferases analyzed to date, it is essential for this fungal species.β(1-3)Glucan is the main component of the fungal cell wall (11). In fungi, β(1-3)glucans are synthesized by a plasma membrane-bound glucan synthase complex. Neosynthesized glucans are then extruded into the periplasmic space (2, 3, 9), where they become branched and covalently linked to other cell wall components, resulting in the formation of three-dimensional rigid structures. In the search of transglycosidase in the filamentous fungus Aspergillus fumigatus, β(1-3)glucanosyltransferases were identified and classified as a unique family (GH72) in the Carbohydrate-Active enZYmes database (http://www.cazy.org/). These enzymes cleave the β(1-3) bond of a β(1-3)glucan oligosaccharide with at least 10 glucose units and transfer the newly formed reducing end (>5 glucose units) to the nonreducing end of another β(1-3)glucan oligosaccharide, resulting in the elongation of the β(1-3)glucans. This reaction can proceed in vitro until the neosynthetized β(1-3)glucan becomes insoluble. Initially demonstrated biochemically, the requirement for long-chain β(1-3)glucan oligosaccharide has now been confirmed by the analysis of the first crystal structure obtained in this transglycosidase family (7, 8). First discovered in Aspergillus fumigatus and named Gelp for glucan elongase, this activity has been found in all fungal species investigated to date and could be assigned to orthologous proteins, such as Gasp or Phrp, that were known to be involved in cell wall integrity but were endowed with an unknown biochemical function (12, 13, 14).  相似文献   

18.
Incubation of resting cells of Sphingobium indicum B90A, Sphingobium japonicum UT26, and Sphingobium francense Sp+ showed that they were able to transform β- and δ-hexachlorocyclohexane (β- and δ-HCH, respectively), the most recalcitrant hexachlorocyclohexane isomers, to pentachlorocyclohexanols, but only resting cells of strain B90A could further transform the pentachlorocyclohexanol intermediates to the corresponding tetrachlorocyclohexanediols. Moreover, experiments with resting cells of Escherichia coli expressing the LinB proteins of strains B90A, UT26, and Sp+ indicated that LinB was responsible for these transformations. Purified LinB proteins from all three strains also effected the formation of the respective pentachlorocyclohexanols. Although the three LinB enzymes differ only marginally with respect to amino acid sequence, they showed interesting differences with respect to substrate specificity. When LinB from strain B90A was incubated with β- and δ-HCH, the pentachlorocyclohexanol products were further transformed and eventually disappeared from the incubation mixtures. In contrast, the LinB proteins from strains UT26 and Sp+ could not catalyze transformation of the pentachlorocyclohexanols, and these products accumulated in the incubation mixture. A mutant of strain Sp+ lacking linA and linB did not degrade any of the HCH isomers, including β-HCH, and complementation of this mutant by linB from strain B90A restored the ability to degrade β- and δ-HCH.  相似文献   

19.
Escherichia coli displays O antigens on the outer membrane that play an important role in bacterial interactions with the environment. The O antigens of enterohemorrhagic E. coli O104 and O5 contain a Galβ1-3GalNAc disaccharide at the reducing end of the repeating unit. Several other O antigens contain this disaccharide, which is identical to the mammalian O-glycan core 1 or the cancer-associated Thomsen-Friedenreich (TF) antigen. We identified the wbwC genes responsible for the synthesis of the disaccharide in E. coli serotypes O104 and O5. To functionally characterize WbwC, an acceptor substrate analog, GalNAcα-diphosphate-phenylundecyl, was synthesized. WbwC reaction products were isolated by high-pressure liquid chromatography and analyzed by mass spectrometry, nuclear magnetic resonance, galactosidase and O-glycanase digestion, and anti-TF antibody. The results clearly showed that the Galβ1-3GalNAcα linkage was synthesized, confirming WbwCECO104 and WbwCECO5 as UDP-Gal:GalNAcα-diphosphate-lipid β1,3-Gal-transferases. Sequence analysis revealed a conserved DxDD motif, and mutagenesis showed the importance of these Asp residues in catalysis. The purified enzymes require divalent cations (Mn2+) for activity and are specific for UDP-Gal and GalNAc-diphosphate lipid substrates. WbwC was inhibited by bis-imidazolium salts having aliphatic chains of 18 to 22 carbons. This work will help to elucidate mechanisms of polysaccharide synthesis in pathogenic bacteria and provide technology for vaccine synthesis.  相似文献   

20.
Biosynthesis of glucans occurred in cell-free fractions isolated from onion stem (Allium cepa L.) enriched in either dictyosomes or plasma membranes. β-1,3- and β-1, 4-Glucans were synthesized in differing proportions and at different rates as the concentration of uridine diphosphoglucose or the proportion of dictyosomes or plasma membrane varied. At low (1.5 μm) UDP-glucose concentrations synthesis of alkali-insoluble glucan was correlated with abundance of dicytosomes; most of the substrate utilized by plasma membrane was for glycolipid synthesis. At high (1 mm) UDP-glucose concentration, the synthesis of alkali-insoluble glucans correlated with the abundance of plasma membrane. Substrate enhancement of β-1, 4-glucan synthesis in dictyosome fractions was less than proportional to increases in substrate concentration. In contrast, β-1, 4-glucan synthesis by plasma membrane was more than proportionately increased. At high substrate concentrations the synthesis of β-1, 3-glucans predominated in both dictyosome and plasma membrane fractions. The results show that the capacity to synthesize glucans resides in both Golgi apparatus and plasma membranes of onion stem, but that the plasma membrane has the greatest capacity for synthesis of alkali-insoluble glucans at high UDP-glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号