首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Dense lamellar bodies (DLB) were noted in immature cells in the developing ovary of the free-tailed bat. The DLB appear to be formed in the nucleus. They pass through the nuclear membrane into the cytoplasm. There they give rise to parallel stacks of flattened cisternae which are representative of typical dictyosomes. During the first meiotic prophase the dictyosomes aggregate to form the Golgi complex.This study was supported in part by a research grant from U.S.P.H.S. (GRS 5 SO1 RR 05704-01).The authors wish to acknowledge the technical assistance of Mrs. Edna Burgess.  相似文献   

2.
The bovine exocrine pancreatic cell produces a variety of enzymes and proenzymes for export. Biochemical studies by Greene L.J., C.H. Hirs, and G.E. Palade (J. Biol. Chem. 1963. 238:2054) have shown that the mass proportions of several of these proteins in resting pancreatic juice and zymogen granule fractions are identical. In this study we have used immunocytochemical techniques at the electron microscope level to determine whether regional differences exist in the bovine gland with regard to production of individual secretory proteins and whether specialization of product handling occurs at the subcellular level. The technique used is a modification of one previously reported (McLean, J.D., and S.J. Singer. 1970. Proc. Natl. Acad. Sci U.S.A. 69:1771) in which immunocytochemical reagents are applied to thin sections of bovine serum albumin-imbedded tissue and zymogen granule fractions. A double antibody technique was used in which the first step consisted of rabbit F(ab')2 antibovine secretory protein and the detection step consisted of sheep (F(ab')2 antirabbit F(ab')2 conjugated to ferritin. The results showed that all exocrine cells in the gland, and all zymogen granules and Golgi cisternae in each cell, were qualitatively alike with regard to their content of secretory proteins examined (trypsinogen, chymotrypsinogen A, carboxypeptidase A, RNase, and DNase). The data suggest that these secretory proteins are transported through the cisternae of the Golgi complex where they are intermixed before copackaging in zymogen granules; passage through the Golgi complex is apparently obligatory for these (and likely all) secretory proteins, and is independent of extent of glycosylation, e.g., trypsinogen, a nonglycoprotein vs. DNase, a glycoprotein.  相似文献   

3.
Here we examine the contribution of actin dynamics to the architecture and pH of the Golgi complex. To this end, we have used toxins that depolymerize (cytochalasin D, latrunculin B, mycalolide B, and Clostridium botulinum C2 toxin) or stabilize (jasplakinolide) filamentous actin. When various clonal cell lines were examined by epifluorescence microscopy, all of these actin toxins induced compaction of the Golgi complex. However, ultrastructural analysis by transmission electron microscopy and electron tomography/three-dimensional modelling of the Golgi complex showed that F-actin depolymerization first induces perforation/fragmentation and severe swelling of Golgi cisternae, which leads to a completely disorganized structure. In contrast, F-actin stabilization results only in cisternae perforation/fragmentation. Concomitantly to actin depolymerization-induced cisternae swelling and disorganization, the intra-Golgi pH significantly increased. Similar ultrastructural and Golgi pH alkalinization were observed in cells treated with the vacuolar H+ -ATPases inhibitors bafilomycin A1 and concanamycin A. Overall, these results suggest that actin filaments are implicated in the preservation of the flattened shape of Golgi cisternae. This maintenance seems to be mediated by the regulation of the state of F-actin assembly on the Golgi pH homeostasis.  相似文献   

4.
The Golgi apparatus of plant cells is engaged in both the processing of glycoproteins and the synthesis of complex polysaccharides. To investigate the compartmentalization of these functions within individual Golgi stacks, we have analyzed the ultrastructure and the immunolabeling patterns of high-pressure frozen and freeze-substituted suspension-cultured sycamore maple (Acer pseudoplatanus L.) cells. As a result of the improved structural preservation, three morphological types of Golgi cisternae, designated cis, medial, and trans, as well as the trans Golgi network, could be identified. The number of cis cisternae per Golgi stack was found to be fairly constant at approximately 1, whereas the number of medial and trans cisternae per stack was variable and accounted for the varying number of cisternae (3-10) among the many Golgi stacks examined. By using a battery of seven antibodies whose specific sugar epitopes on secreted polysaccharides and glycoproteins are known, we have been able to determine in which types of cisternae specific sugars are added to N-linked glycans, and to xyloglucan and polygalacturonic acid/rhamnogalacturonan-I, two complex polysaccharides. The findings are as follows. The β-1,4-linked d-glucosyl backbone of xyloglucan is synthesized in trans cisternae, and the terminal fucosyl residues on the trisaccharide side chains of xyloglucan are partly added in the trans cisternae, and partly in the trans Golgi network. In contrast, the polygalacturonic/rhamnogalacturonan-I backbone is assembled in cis and medial cisternae, methylesterification of the carboxyl groups of the galacturonic acid residues in the polygalacturonic acid domains occurs mostly in medial cisternae, and arabinose-containing side chains of the polygalacturonic acid domains are added to the nascent polygalacturonic acid/rhamnogalacturonan-I molecules in the trans cisternae. Double labeling experiments demonstrate that xyloglucan and polygalacturonic acid/rhamnogalacturonan-I can be synthesized concomitantly within the same Golgi stack. Finally, we show that the xylosyl residue-linked β-1,2 to the β-linked mannose of the core of N-linked glycans is added in medial cisternae. Taken together, our results indicate that in sycamore maple suspension-cultured cells, different types of Golgi cisternae contain different sets of glycosyl transferases, that the functional organization of the biosynthetic pathways of complex polysaccharides is consistent with these molecules being processed in a cis to trans direction like the N-linked glycans, and that the complex polysaccharide xyloglucan is assembled exclusively in trans Golgi cisternae and the trans Golgi network.  相似文献   

5.
Synopsis On examination with ultrastructural methods for visualizing thevicinal glycols and acid groups of complex carbohydrates, the most superficial surface epithelium of the rat gastric corpus displayed biphasic mucous droplets consisting of a cortex of hexose-rich (i.e. periodate-reactive) neutral mucosubstance and an uncharacterized denser core plus monophasic droplets with the neutral mucosubstance. In many surface epithelial cells of the foveolae, the biphasic and monophasic droplets with the neutral mucosubstance intermingled in varying proportions with monophasic droplets showing uniform periodate reactivity, a variable degree of dialyzed ironbinding—demonstrative of acidic glycoconjugate, and high iron—diamine affinity—demonstrative of sulphomucin. Deep foveolar epithelium displayed only monophasic droplets, most of which contained acidic periodate-reactive complex carbohydrate. Underiying cells, designated isthmus cells, exhibited monophasic or occasional biphasic granules containing sulphated, hexose-rich mucosubstance. Nascent droplets or granules near the Golgi zone differed from the mature organelles in the distribution of the glycoconjugate. Mucous neck cells occupied a deeper stratum and displayed a uniform population of monophasic mucous droplets with a loose meshwork of neutral mucosubstance.Techniques for demonstrating hexoses ultrastructurally stained all Golgi cisternae in the mucigenic epithelium, showing increasing reactivity toward the maturing face. Distinctive cistemae with moderate reactivity in the Golgi complex of isthmus cells were interpreted as GERL. Acidic mucosubstances were visualized only in the inner, mature cisternae of the Golgi complex of cells storing acidic glycoconjugates, and not in cisternae interpretable as GERL.The apical plasmalemma of isthmus cells uniquely exhibited abundant sulphated glycoconjugate and that of parietal cells revealed a less prominent, periodic neutral mucosubstance. Lateral and basal plasmalemmae varied from unstained to slightly reactive; basement membranes showed moderate reactivity with methods for visualizing complex carbohydrates. Abundance of glycogen further characterized surface epithelial cells of the corpus and of some parietal cells  相似文献   

6.
In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2- mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.  相似文献   

7.
An attempt at cytochemical demonstration of acidification proton-translocating ATPase (H(+)-ATPase) of Golgi complex in rat pancreatic acinar cells has been made by using p-nitrophenylphosphatase (NPPase) cytochemistry which is used for detecting of Na(+)-K(+)-ATPase (Mayahara et al. 1980) and gastric H(+)-K(+)-ATPase (Fujimoto et al. 1986). K(+)-independent NPPase activity was observed on the membrane of the trans cisternae of Golgi complex, but not inside of cisternae. The localization of NPPase activity is different from that of acid phosphatase activity where reaction products were seen on the inside of the trans Golgi cisternae. Since this activity was insensitive to vanadate, ouabain and independent of potassium ions, it was distinct from plasma membranous ATPases such as Na(+)-K(+)-ATPase and Ca2(+)-ATPase. The K(+)-independent NPPase activity was diminished by the inhibitors of H(+)-ATPase such as N-ethylmaleimide (NEM) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The NPPase reaction products were also seen on the membranes of other acidic organelles, i.e., lysosomes, endosomes, autophagosomes and coated vesicles. These results suggest that NPPase activity on the membrane of the Golgi complex and other acidic organelles corresponds with H(+)-ATPase which plays a role in acidification.  相似文献   

8.
Y Aratani  Y Kitagawa 《FEBS letters》1988,235(1-2):129-132
Tyrosine sulfation of entactin was studied by labeling of 3T3-L1 adipocytes with [35S]methionine or H2 35SO4 in the presence or absence of tunicamycin or monensin. Four precursors (EN1-4) at different steps of modification were detected in addition to mature entactin. Under normal conditions, EN2 and mature entactin were intracellular species, and the latter was sulfated and secreted. Inhibition of co-translational transfer of N-linked oligosaccharides by tunicamycin produced EN1 and EN3 as intracellular species, and EN3 was sulfated and secreted. Interruption of protein transport from medial to trans (distal) Golgi cisternae by monensin, and consequent blockage of terminal glycosylation caused intracellular accumulation of EN4. EN4 was sulfated and of different size compared to mature entactin. These facts suggested that tyrosine sulfation of entactin occurs in medial Golgi cisternae and is not the last modification before its secretion. Our results appeared inconsistent with recent observations by Baeuerle and Huttner [(1987) J. Cell Biol. 105, 2655-2664] that tyrosine sulfation of IgM occurred within the trans (distal) Golgi cisternae as the last modification before its exit from the Golgi complex.  相似文献   

9.
Summary Electron microscopic cytochemistry was used to determine the localization of five phosphatase enzymes—glucose-6-phosphatase, inosine diphosphatase, thiamine pyrophosphatase, acid phosphatase, and adenosine triphosphatase—in control human testes. Glucose-6-phosphatase occurred in the endoplasmic reticulum and nuclear envelope of Sertoli cells, Leydig cells and primitive spermatogonia, but was not observed in more advanced spermatogenic cells. The presence of glucose-6-phosphatase activity paralleled the presence of glycogen in spermatogenic cells, i.e., both occurred in type AL and AD spermatogonia but not in type AP or B spermatogonia or in more advanced spermatogenic cells. Inosine diphosphatase activity was found in the endoplasmic reticulum, nuclear envelope, and Golgi complex of Sertoli cells and all spermatogenic cells except late spermatids. Additionally, inosine diphosphatase activity was localized at the junctions between Sertoli cells and late spermatids, but was not associated with any other plasma membrane. Thiamine pyrophosphatase reaction product was found in the Golgi bodies of Sertoli cells and in spermatogenic cells through immature spermatids. Neither inosine diphosphatase nor thiamine pyrophosphatase was observed in the Golgi bodies of spermatids during acrosomal formation. Acid phosphatase activity was found in lysosomes of spermatogonia, spermatocytes, and spermatids, in lysosomes of Leydig cells, and in lysosomes, lipofuscin bodies, and Golgi cisternae of Sertoli cells. It is thought that Sertoli lysosomes play a role in the phagocytosis of degenerating germ cells; however, the role of spermatogenic or Leydig lysosomes is unknown. Adenosine triphosphatase activity occurred at the interfaces between two spermatogonia, and between Sertoli cells and spermatogonia, but was not observed in the spaces between two Sertoli cells, two spermatocytes, two spermatids, or between Sertoli cells and spermatocytes, or between Sertoli cells and spermatids.Supported in part by a grant from the U.S. Atomic Energy Commission (AT-(40-1)-4002).  相似文献   

10.
Summary An electron microscopic study of the Golgi apparatus in the giant amoeba, Pelomyxa illinoisensis, has been presented. Studies of normally feeding, dividing, starving, and refeeding amoebae were made. The major finding is that plasmalemma vesicles, formed via pinocytosis and phagocytosis, either flatten or invaginate and form the cisternae of the Golgi apparatus. Plasmalemma vesicles are also a source of new cisternae during the lifetime of a given Golgi apparatus. The cisternae migrate through the Golgi system, but before being released they either inflate, or segment into smaller vesicles. It is postulated that they later empty into the contractile vacuole and into certain other vacuoles. No evidence was found for the fusion of smooth Golgi vesicles or fringed vesicles of any kind with the plasmalemma.Dedicated to Professor Friedrich Wassermann with admiration and affection on the occasion of his eightieth birthday.Work supported by U. S. Atomic Energy Commission. A part of the work was reported at the XVI International Congress of Zoology, Washington, D. C., in 1963.  相似文献   

11.
Summary The distribution of thiamine pyrophosphatase (TPPase) activity in the acinar cells of the rat sublingual gland has been studied at various stages of the secretory cycle following stimulated secretion. The rats were stimulated to secrete by an intraperitoneal injection of isoproterenol and pilocarpine. In non-stimulated glands, TPPase activity is detected mainly in 3–4 cisternae at the inner concave side of the Golgi complex and in some adjacent condensing vacuoles as in other cells. In the acinar cells 1 to 2 h after stimulation, however, reaction product for the same enzyme activity is detected in the cisternae at the outer aspect, as well as the inner aspect, of the Golgi complex and even in the cisternae of the endoplasmic reticulum (ER). About 4 h after stimulation, TPPase activity becomes concentrated in 3–4 disternae at the inner concave side of the Golgi complex as in the acinar cells under non-stimulated conditions. Morphological observations of the acinar cells 1 to 2 h after the stimulation have indicated that the reorganization of the Golgi complex and ER is a major event which occurs at this stage. It is possible that this cellular event is related to the occurrence of TPPase activity in those sites which normally show negative reaction in non-stimulated state.  相似文献   

12.
The cisternal progression/maturation model of Golgi trafficking predicts that cis‐Golgi cisternae are formed de novo on the cis‐side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high‐pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno‐electron microscopy techniques. Our findings are as follows: (i) The cis‐most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2‐Cn cis cisternae grow through COPII vesicle fusion. (v) ER‐resident proteins are recycled from cis cisternae to the ER via COPIa‐type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self‐assembly of scale protein complexes. (vii) In plants, ~90% of native α‐mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre‐cis Golgi cisterna layer in mammalian cells.  相似文献   

13.
To characterize endogenous molecules and activities of the Golgi complex, proteins in transit were >99% cleared from rat hepatocytes by using cycloheximide (CHX) treatment. The loss of proteins in transit resulted in condensation of the Golgi cisternae and stacks. Isolation of a stacked Golgi fraction is equally efficient with or without proteins in transit [control (CTL SGF1) and cycloheximide (CHX SGF1)]. Electron microscopy and morphometric analysis showed that >90% of the elements could be positively identified as Golgi stacks or cisternae. Biochemical analysis showed that the cis-, medial-, trans-, and TGN Golgi markers were enriched over the postnuclear supernatant 200- to 400-fold with and 400- to 700-fold without proteins in transit. To provide information on a mechanism for import of calcium required at the later stages of the secretory pathway, calcium uptake into CTL SGF1 and CHX SGF1 was examined. All calcium uptake into CTL SGF1 was dependent on a thapsigargin-resistant pump not resident to the Golgi complex and a thapsigargin-sensitive pump resident to the Golgi. Experiments using CHX SGF1 showed that the thapsigargin-resistant activity was a plasma membrane calcium ATPase isoform in transit to the plasma membrane and the thapsigargin-sensitive pump was a sarcoplasmic/endoplasmic reticulum calcium ATPase isoform. In vivo both of these calcium ATPases function to maintain millimolar levels of calcium within the Golgi lumen.  相似文献   

14.
A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex.  相似文献   

15.
Nucleocytoplasmic traffic of proteins.   总被引:2,自引:0,他引:2  
We have used the synchronized formation of a mixed cytoplasm upon heterokaryon formation as a model for investigating the cisternal-specific transport of resident proteins between neighboring Golgi apparatus. Rat NRK and hamster 15B cells were fused by UV-inactivated Sindbis virus and then incubated for various time periods in the presence of cycloheximide. The resident Golgi apparatus proteins, rat GIMPc and Golgp 125, were localized with species-specific monoclonal antibodies. Immunofluorescent colocalization of rat and hamster Golgi membrane proteins was observed with a t1/2 of 1.75 h at 37 degrees C. Colocalization of resident, but not transient, Golgi membrane protein was concomitant with formation of a large extended Golgi complex and was accompanied by the acquisition of endoglycosidase H resistance by preexisting Golgp 125. Dispersal of the extended Golgi complex by nocodazole revealed that colocalization of resident Golgi proteins was due to intermixing of proteins in the same Golgi element rather than overlapping of closely apposed Golgi structures. Incubation of the polykaryons at 20 degrees C inhibited both the colocalization of GIMPc and Golgp 125 and the formation of an extended Golgi complex. Little change in the number of cisternae/stack in cross sections of the Golgi apparatus was observed upon cell fusion, and in the extended Golgi complex the hamster resident protein remained localized to one side of the Golgi stack. Surprisingly, the morphological identity of the rat and hamster Golgi units appeared to be maintained in the heterokaryons. These results suggest that the intermixing of resident Golgi membrane proteins requires direct physical continuity between Golgi elements and that resident Golgi membrane proteins are preferentially excluded from the non-clathrin-coated transport vesicles budding from Golgi cisternae.  相似文献   

16.
Summary As shown by electron microscopic histochemistry using a modified Gomori lead salt technique, acid phosphatase is present in large dense granules and the Golgi apparatus —but not the light granules—in both immature and mature heterophils in the chicken. The large dense granules appear to form by budding from the Golgi cisternae while the light granules appear to be unassociated with the Golgi apparatus. The findings indicate that the large, dense granules are the lysosomes of the heterophils in the chicken.  相似文献   

17.
Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.

IntroductionThe Golgi apparatus is an intermediate organelle along the secretory pathway that receives proteins and lipids (“cargo”) from the endoplasmic reticulum, covalently modifies them, and then exports them via transport vesicles for trafficking to the plasma membrane or other organelles. In most eukaryotic cells, disc-shaped membrane cisternae, each containing a distinct repertoire of cargo-processing enzymes, are stacked one on top of another to form the “Golgi stack,” a visual hallmark of the organelle (Fig. 1). The cisternae of the Golgi stack are polarized, with the compartment receiving endoplasmic reticulum–derived cargo termed the cis cisterna followed by the medial; trans; and finally, the trans-Golgi network. The physiological advantages conferred by stacking of Golgi cisternae are unclear, but it is thought to enhance the efficiencies of the sequential chemical modifications of glycoproteins and glycolipids during secretion. Cultured mammalian cells may possess more than 100 Golgi stacks, which are aligned side by side about the centrosome to form the “Golgi ribbon” (Fig. 1). Vesicles and tubules span the intervening, “noncompact” zones between stacks of cisternae, connecting analogous cisternae across the ribbon and thereby ensuring a homogeneous distribution of Golgi resident proteins among all cisternae. During mitosis, the Golgi ribbon is unlinked, the stacks are disassembled, and the cisternae are converted to vesicles and tubules; after cytokinesis, the process is reversed, and the Golgi is rebuilt. The dynamic nature of Golgi structure in interphase and mitotic cells implies the existence of a reversible mechanism that tethers Golgi cisternae to each other to form the stack and a mechanism that aligns and links the stacks into the ribbon.Open in a separate windowFigure 1.The organization of the Golgi apparatus in vertebrate cells. Individual stacks of Golgi cisternae are aligned side to side to form the Golgi ribbon. The GRASP65 and GRASP55 proteins are depicted to be enriched on the rims of the indicated cisternae within individual stacks of cisternae, where they are required to maintain the arrangement of stacks into the ribbon.GRASP proteins tether Golgi cisternae in vitroInvestigations into the molecular basis of Golgi cisterna stacking have ultimately focused attention on a handful of cytoplasmic proteins called “Golgins” and “GRASPs” that are associated with specific Golgi cisternae and interact with each other. Of particular interest are two related proteins GRASP65 and GRASP55 (respective systematic names GORASP1 and GORASP2), discovered by Warren and colleagues via in vitro reconstitution experiments, as capable of mediating stacking of Golgi cisternae (Barr et al., 1997; Shorter et al., 1999). Whereas GRASP65 localizes to the cis cisterna, GRASP55 localization favors medial/trans Golgi cisternae (Shorter et al., 1999); hence, these proteins could, in principle, tether cisternae to form a minimal Golgi stack. In these in vitro assays, perturbations (mutations, antibody interference) to either GRASP65 or GRASP55 inhibited stacking of reformed Golgi cisternae. Moreover, GRASP proteins are phosphorylated in mitosis just before vesiculation of Golgi cisternae, and preventing phosphorylation impairs the disassembly of the Golgi apparatus and mitotic progression (Wang et al., 2003). These findings underpin models of the Golgi stack where GRASP65 and GRASP55, along with Golgin proteins, constitute the core components of a cytoplasmic “matrix” of proteins that surround the cisternae, mediating their stacking as well as the tethering of transport vesicles to cisternae. Curiously, plant cells contain stacked Golgi cisternae, yet they do not express any GRASP or GRASP-related proteins. And some nonvertebrate organisms with stacked Golgi cisternae express just one GRASP-related protein, while the Golgi cisternae are not stacked in other nonvertebrate organisms (e.g., yeast) that express a single GRASP (Glick and Malhotra, 1998). Apparently, the presence or number of GRASP proteins expressed does not correlate with stacked cisternae.Whereas the results of in vitro biochemical assays underpin our conceptions of GRASP protein function, probing their roles in vivo has proven to be quite challenging. First, depletion/deletion of each individual GRASP protein is largely without effect on Golgi stack or ribbon formation, but a very complex phenotype results from depletion/deletion of both GRASP proteins. Thus, some reports conclude that the GRASP proteins function redundantly to stack cisternae (Bekier et al., 2017), while others conclude that the Golgi ribbon, not the stack per se, is perturbed upon loss of GRASP proteins (Puthenveedu et al., 2006; Feinstein and Linstedt, 2008; Xiang and Wang, 2010; Lee et al., 2014; Veenendaal et al., 2014). Recently, two papers published in the Journal of Cell Biology employed different methodologies to perturb GRASP protein functions in vivo (Grond et al., 2020; Zhang and Seemann, 2021), providing the most conclusive insight to date into the roles of GRASP proteins in Golgi structure.The Golgi ribbon is unlinked upon loss of GRASP proteinsRabouille and colleagues used traditional mouse gene knockout technology to delete GRASP65, finding that such mice are viable with no apparent physiological deficits or gross morphological perturbations of the Golgi (Veenendaal et al., 2014). In their recent study (Grond et al., 2020), GRASP55 was deleted in the GRASP65 null background, but double-knockout mice could not be obtained, consistent with GRASP proteins being at least partially physiologically redundant. Next, using a conditional knockout approach, double GRASP null cells were produced postnatally in the small intestine, and the Golgi of intestinal epithelial cells was examined. In these cells, stacked Golgi cisternae were observed, but their arrangement into a ribbon was compromised, a result corroborated by more detailed analysis of cells in organoid cultures. These findings are at odds with the conclusions of Wang and colleagues (Bekier et al., 2017), who used CRISPR-Cas9 gene editing technology to construct cultured mammalian cell lines that do not express GRASP65 and GRASP55. They found that the appearance of Golgi cisternae was grossly altered, resembling clusters of tubules and vesicles (“tubulovesicular clusters”) about swollen cisterna remnants that debatably appeared to be stacked. One possible reason for the disparities between these two studies is that Bekier et al. (2017) documented that loss of GRASP proteins in cultured mammalian cells also resulted in depletion of a subset of Golgin proteins (e.g., GM130, Golgin-45) from Golgi cisternae, so it was not possible to parse the specific contributions of GRASP proteins to Golgi structure.Analyses of siRNA-depleted and gene-edited cell lines and modified animals are often complicated by incomplete depletion of a query protein, unintended loss of other proteins, or compensatory processes that obscure loss-of-function effects. Notably, siRNA depletion of GM130, which is associated with GRASP65 on the cis cisterna, impairs secretory traffic from the endoplasmic reticulum to the Golgi apparatus, resulting in a reduction in the size of Golgi cisternae and diminished interstack connectivity possibly due to vesiculation of cisternae (Seemann et al., 2000; Puthenveedu et al., 2006). To minimize these drawbacks, Zhang and Seemann (2021) used gene editing to modify the GRASP65 and GRASP55 loci to append an inducible protein degradation domain to each protein in cultured mammalian cells, which was used to elicit degradation of the GRASP proteins within just 2 h. Hence, the acute effects of GRASP protein depletion could be determined before the onset of potentially confounding effects. Fluorescence recovery after photobleaching assays of a fluorescently tagged Golgi resident protein revealed that acute depletion of both GRASP65 and GRASP55 resulted in decreased mobility of the resident Golgi enzyme within the ribbon, indicating that connectivity of cisternae between stacks was compromised. Stacks of Golgi cisternae with proper cis–trans polarity were observed by electron and light microscopy, both shortly (∼2 h) after GRASP protein turnover was initiated, and after mitosis, indicating that GRASP proteins are not required to establish or to maintain the Golgi stacks. Importantly, the authors observed no changes in the levels of GRASP-associated proteins (e.g., GM130) when assayed shortly after initiating GRASP protein turnover, but the amounts of several GRASP-associated proteins were reduced after prolonged growth in the absence of GRASP proteins. The results are in general agreement with experiments by Jarvela and Linstedt (2014), who expressed GRASP65 and GRASP55 fusion proteins appended with “killer RFP” and used chomophore-assisted light inactivation to rapidly (1 min) ablate the proteins in cultured mammalian cells. Similar to Zhang and Seemann (2021), they observed that the Golgi ribbon was disassembled upon inactivation of GRASP proteins, but stacking of cisternae was unaffected. Taken together, these results conclusively show that acute depletion of GRASP65 and GRASP55 impairs lateral linking of stacked Golgi cisternae within the ribbon while not affecting stacking of cisternae.Conclusions and perspectivesA body of work now more than 20 years old has shown that GRASP65 and GRAPS55 are core structural components of a matrix of cytoplasmic proteins associated with Golgi cisternae; however, the Grond et al. (2020) and Zhang and Seemann (2021) reports now firmly establish that GRASP proteins are dispensable for stacking of Golgi cisterna and indicate that they are required for linking Golgi stacks within the ribbon. These new studies suggest that the integrity of the Golgi matrix critically depends on the presence of GRASP proteins, and their absence perturbs the balance of cargo flow through the Golgi, reducing the interstack exchange required to maintain connectivity of stacks within the ribbon. How might GRASP proteins facilitate linking of stacks within the Golgi ribbon? When the ribbon is disrupted (using the microtubule depolymerizing reagent nocodazole) and individual Golgi stacks are examined, GRASP65 and GRASP55 appear to be enriched at the rims of Golgi cisternae (Fig. 1; Tie et al., 2018). Hence, the GRASP proteins are positioned at the vesicle-rich interface between adjacent cisternal stacks. Grond et al. (2020) observed reductions in the size of Golgi cisternae in cells deleted of both GRASP proteins and speculated that this may be due to increased coatomer I vesicle formation at the rims of cisternae. In this view, GRASP proteins dampen vesicle flux at the rims of Golgi cisternae, a model supported by the observation that depletion of GRASP proteins leads to an increase in secretion rate (Wang et al., 2008). These new studies firmly shift our view of GRASP protein function away from the stacking of Golgi cisternae, and we look forward to new mechanistic insights into the roles of GRASP proteins in Golgi ribbon formation as well as in non–Golgi-dependent processes, such as unconventional protein secretion (Kinseth et al., 2007).  相似文献   

18.
Frozen, thin sections of baby hamster kidney (BHK) cells were incubated with either concanavalin A (Con A) or Ricinus communis agglutinin I (RCA) to localize specific oligosaccharide moieties in endoplasmic reticulum (ER) and Golgi membranes. These lectins were then visualized using an anti-lectin antibody followed by protein A conjugated to colloidal gold. All Golgi cisternae and all ER membranes were uniformly labeled by Con A. In contrast, RCA gave a uniform labeling of only half to three-quarters of those cisternae on the trans side of the Golgi stack; one or two cis Golgi cisternae and all ER membranes were essentially unlabeled. This pattern of lectin labeling was not affected by infection of the cells with Semliki Forest virus (SFV). Infected cells transport only viral spike glycoproteins from their site of synthesis in the ER to the cell surface via the stacks of Golgi cisternae where many of the simple oligosaccharids on the spike proteins are converted to complex ones (Green, J., G. Griffiths, D. Louvard, P. Quinn, and G. Warren. 1981. J. Mol. Biol. 152:663-698). It is these complex oligosaccharides that were shown, by immunoblotting experiments, to be specifically recognized by RCA. Loss of spike proteins from Golgi cisternae after cycloheximide treatment (Green et al.) was accompanied by a 50% decrease in the level of RCA binding. Hence, about half of the RCA bound to Golgi membranes in thin sections was bound to spike proteins bearing complex oligosaccharides and these were restricted to the trans part of the Golgi stack. Our results strongly suggest that complex oligosaccharides are constructed in trans Golgi cisternae and that the overall movement of spike proteins is from the cis to the trans side of the Golgi stack.  相似文献   

19.
Summary The fine structural localization of acid phosphatase was studied in osteoblasts and osteocytes of fracture callus in the rat using glutaraldehyde-fixed EDTA-decalcified, dimethylsulfoxide-treated tissues incubated in a modified Gomori lead salt medium. The results showed that enzyme was not only localized in conventional lysosomes but also in Golgi cisternae, Golgi associated vesicles, and — in the case of osteoblasts — GERL-like regions. The Golgi regions were large and abundant in osteoblasts and small and inconspicuous in osteocytes while lysosomes were of approximately equal size in the two cell types but appeared to be more concentrated in osteocytes. The results were discussed in relation to the possible role of lysosomes and lysosomal enzymes in osteocytic osteolysis and the functional diversity of the Golgi apparatus in osteogenic cells.  相似文献   

20.
We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号