首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion of BP80-ligands from tobacco (Nicotiana tabacum) leaf protoplasts. We show that both the transmembrane domain and the cytosolic tail of BP80 contain information necessary for efficient progress to the prevacuolar compartment (PVC). Furthermore, the tail must be exposed on the correct membrane surface to compete with sorting machinery. Mutational analysis of conserved residues revealed that multiple sequence motifs are necessary for competition, one of which is a typical Tyr-based motif (YXXPhi). Substitution of Tyr-612 for Ala causes partial retention in the Golgi apparatus, mistargeting to the plasma membrane (PM), and slower progress to the PVC. A role in Golgi-to-PVC transport was confirmed by generating the corresponding mutation on full-length BP80. The mutant receptor was partially mistargeted to the PM and induced the secretion of a coexpressed BP80-ligand. Further mutants indicate that the cytosolic tail is likely to contain other information besides the YXXPhi motif, possibly for endoplasmic reticulum export, endocytosis from the PM, and PVC-to-Golgi recycling.  相似文献   

2.
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.  相似文献   

3.
Plant vacuolar sorting receptors (VSRs) display cytosolic Tyr motifs (YMPL) for clathrin-mediated anterograde transport to the prevacuolar compartment. Here, we show that the same motif is also required for VSR recycling. A Y612A point mutation in Arabidopsis thaliana VSR2 leads to a quantitative shift in VSR2 steady state levels from the prevacuolar compartment to the trans-Golgi network when expressed in Nicotiana tabacum. By contrast, the L615A mutant VSR2 leaks strongly to vacuoles and accumulates in a previously undiscovered compartment. The latter is shown to be distinct from the Golgi stacks, the trans-Golgi network, and the prevacuolar compartment but is characterized by high concentrations of soluble vacuolar cargo and the rab5 GTPase Rha1(RabF2a). The results suggest that the prevacuolar compartment matures by gradual receptor depletion, leading to the formation of a late prevacuolar compartment situated between the prevacuolar compartment and the vacuole.  相似文献   

4.
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor–ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer‐mediated recycling of the plant VSR BP80 starts at the trans‐Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co‐expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII‐mediated transport route. Retention of soluble cargo despite ongoing COPII‐mediated bulk flow can only be explained by an interaction with membrane‐bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER‐anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR–ligand interaction. It also implies that the retromer‐mediated recycling route for the VSRs leads from the TGN back to the ER.  相似文献   

5.
In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the “classical model” for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR–ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR–ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR–ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca2+ in VSR–ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.  相似文献   

6.
Newly synthesized vacuolar hydrolases such as carboxypeptidase Y (CPY) are sorted from the secretory pathway in the late-Golgi compartment and reach the vacuole after a distinct set of membrane-trafficking steps. Endocytosed proteins are also delivered to the vacuole. It has been proposed that these pathways converge at a "prevacuolar" step before delivery to the vacuole. One group of genes has been described that appears to control both of these pathways. Cells carrying mutations in any one of the class E VPS (vacuolar protein sorting) genes accumulate vacuolar, Golgi, and endocytosed proteins in a novel compartment adjacent to the vacuole termed the "class E" compartment, which may represent an exaggerated version of the physiological prevacuolar compartment. We have characterized one of the class E VPS genes, VPS27, in detail to address this question. Using a temperature-sensitive allele of VPS27, we find that upon rapid inactivation of Vps27p function, the Golgi protein Vps10p (the CPY-sorting receptor) and endocytosed Ste3p rapidly accumulate in a class E compartment. Upon restoration of Vps27p function, the Vps10p that had accumulated in the class E compartment could return to the Golgi apparatus and restore correct sorting of CPY. Likewise, Ste3p that had accumulated in the class E compartment en route to the vacuole could progress to the vacuole upon restoration of Vps27p function indicating that the class E compartment can act as a functional intermediate. Because both recycling Golgi proteins and endocytosed proteins rapidly accumulate in a class E compartment upon inactivation of Vps27p, we propose that Vps27p controls membrane traffic through the prevacuolar/endosomal compartment in wild-type cells.  相似文献   

7.
In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.  相似文献   

8.
We have studied the transport of proricin and pro2S albumin to the protein storage vacuoles of developing castor bean (Ricinus communis L.) endosperm. Immunoelectron microscopy and cell fractionation reveal that both proteins travel through the Golgi apparatus and co-localize throughout their route to the storage vacuole. En route to the PSV, the proteins co-localize in large (>200 nm) vesicles, which are likely to represent developing storage vacuoles. We further show that the sequence-specific vacuolar sorting signals of both proricin and pro2SA bind in vitro to proteins that have high sequence similarity to members of the VSR/AtELP/BP-80 vacuolar sorting receptor family, generally associated with clathrin-mediated traffic to the lytic vacuole. The implications of these findings in relation to the current model for protein sorting to storage vacuoles are discussed.  相似文献   

9.
The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4- ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.  相似文献   

10.
Sohn EJ  Kim ES  Zhao M  Kim SJ  Kim H  Kim YW  Lee YJ  Hillmer S  Sohn U  Jiang L  Hwang I 《The Plant cell》2003,15(5):1057-1070
Rab proteins are members of the Ras superfamily of small GTP binding proteins and play important roles in various intracellular trafficking steps. We investigated the role of Rha1, an Arabidopsis Rab5 homolog, in intracellular trafficking in Arabidopsis protoplasts. In the presence of a dominant-negative mutant of Rha1, soluble vacuolar cargo proteins such as sporamin:green fluorescent protein (Spo:GFP) and Arabidopsis aleurain like protein:GFP are not delivered to the central vacuole; instead, they accumulate as a diffuse or punctate staining pattern within the cell. Spo:GFP at the punctate stains observed in the presence of hemagglutinin:Rha1[S24N] is colocalized with endogenous vacuolar sorting receptor (VSR(At-1)), which is known to localize primarily to the prevacuolar compartment, whereas Spo:GFP in the diffuse pattern is associated with tonoplasts. Furthermore, expression of Rha1[S24N] causes the secretion of a portion of the vacuolar proteins into medium. However, the inhibitory effect of Rha1[S24N] on vacuolar trafficking is relieved partially by coexpressed wild-type Rha1. Based on these results, we propose that Rha1 plays a critical role in the trafficking of soluble cargoes from the prevacuolar compartment to the central vacuole.  相似文献   

11.
Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV.  相似文献   

12.
We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specific inhibition of endoplasmic reticulum export via overexpression of Sec12p or coexpression of a GTP-restricted form of Sar1p inhibits the anterograde transport of either cargo molecule in a similar manner. Increased secretion of the vacuolar protein was not observed after incubation with the drug brefeldin A or after coexpression of the GDP-restricted mutant of ARF1 (T31N). Therefore, the differential effect of inducing the secretion of one cargo molecule while inhibiting the secretion of another is dependent on the GTP hydrolysis by ARF1p and is not caused by a general inhibition of Golgi-derived COPI vesicle traffic. Moreover, we demonstrate that GTP-restricted ARF1-stimulated secretion is observed only for cargo molecules that are expected to be sorted in a BP80-dependent manner, exhibiting sequence-specific, context-independent, vacuolar sorting signals. Induced secretion of proteins carrying C-terminal vacuolar sorting signals was not observed. This finding suggests that ARF1p influences the BP80-mediated transport route to the vacuole in addition to transport steps of the default secretory pathway to the cell surface.  相似文献   

13.
BP-80 is a type I integral membrane protein abundant in pea (Pisum sativum) clathrin-coated vesicles (CCVs) that binds with high affinity to vacuole-targeting determinants containing asparagine-proline-isoleucine-arginine. Here we present results from cDNA cloning and studies of its intracellular localization. Its sequence and sequences of homologs from Arabidopsis, rice (Oryza sativa), and maize (Zea mays) define a novel family of proteins unique to plants that is highly conserved in both monocotyledons and dicotyledons. The BP-80 protein is present in dilated ends of Golgi cisternae and in "prevacuoles," which are small vacuoles separate from but capable of fusing with lytic vacuoles. Its cytoplasmic tail contains a Tyr-X-X-hydrophobic residue motif associated with transmembrane proteins incorporated into CCVs. When transiently expressed in tobacco (Nicotiana tabacum) suspension-culture protoplasts, a truncated form lacking transmembrane and cytoplasmic domains was secreted. These results, coupled with previous studies of ligand-binding specificity and pH dependence, strongly support our hypothesis that BP-80 is a vacuolar sorting receptor that trafficks in CCVs between Golgi and a newly described prevacuolar compartment.  相似文献   

14.
Developing pea cotyledons contain functionally different vacuoles, a protein storage vacuole and a lytic vacuole. Lumenal as well as membrane proteins of the protein storage vacuole exit the Golgi apparatus in dense vesicles rather than in clathrin-coated vesicles (CCVs). Although the sorting receptor for vacuolar hydrolases BP-80 is present in CCVs, it is not detectable in dense vesicles. To localize these different vacuolar sorting events in the Golgi, we have compared the distribution of vacuolar storage proteins and of alpha-TIP, a membrane protein of the protein storage vacuole, with the distribution of the vacuolar sorting receptor BP-80 across the Golgi stack. Analysis of immunogold labeling from cryosections and from high pressure frozen samples has revealed a steep gradient in the distribution of the storage proteins within the Golgi stack. Intense labeling for storage proteins was registered for the cis-cisternae, contrasting with very low labeling for these antigens in the trans-cisternae. The distribution of BP-80 was the reverse, showing a peak in the trans-Golgi network with very low labeling of the cis-cisternae. These results indicate a spatial separation of different vacuolar sorting events in the Golgi apparatus of developing pea cotyledons.  相似文献   

15.
《The Journal of cell biology》1995,130(6):1307-1318
Vacuolar matrix proteins in plant cells are sorted from the secretory pathway to the vacuoles at the Golgi apparatus. Previously, we reported that the NH2-terminal propeptide (NTPP) of the sporamin precursor and the COOH-terminal propeptide (CTPP) of the barley lectin precursor contain information for vacuolar sorting. To analyze whether these propeptides are interchangeable, we expressed constructs consisting of wild-type or mutated NTPP with the mature part of barley lectin and sporamin with CTPP and mutated NTPP in tobacco BY-2 cells. The vacuolar localization of these constructs indicated that the signals were interchangeable. We next analyzed the effect of wortmannin, a specific inhibitor of mammalian phosphatidylinositol (PI) 3-kinase on vacuolar delivery by NTPP and CTPP in tobacco cells. Pulse-chase analysis indicated that 33 microM wortmannin caused almost complete inhibition of CTPP-mediated transport to the vacuoles, while NTPP-mediated transport displayed almost no sensitivity to wortmannin at this concentration. This indicates that there are at least two different mechanisms for vacuolar sorting in tobacco cells, and the CTPP-mediated pathway is sensitive to wortmannin. We compared the dose dependencies of wortmannin on the inhibition of CTPP-mediated vacuolar delivery of proteins and on the inhibition of the synthesis of phospholipids in tobacco cells. Wortmannin inhibited PI 3- and PI 4-kinase activities and phospholipid synthesis. Missorting caused by wortmannin displays a dose dependency that is similar to the dose dependency for the inhibition of synthesis of PI 4-phosphate and major phospholipids. This is different, however, than the inhibition of synthesis of PI 3- phosphate. Thus, the synthesis of phospholipids could be involved in CTPP-mediated vacuolar transport.  相似文献   

16.
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them were ubiquitously expressed through out all tissues examined. A series of transient expression assays using green fluorescent protein (GFP) fused proteins revealed that most of the SNARE proteins were located on specific intracellular compartments: 6 in the endoplasmic reticulum, 9 in the Golgi apparatus, 4 in the trans-Golgi network (TGN), 2 in endosomes, 17 on the plasma membrane, 7 in both the prevacuolar compartment (PVC) and vacuoles, 2 in TGN/PVC/vacuoles, and 1 in TGN/PVC/plasma membrane. Some SNARE proteins showed multiple localization patterns in two or more different organelles, suggesting that these SNAREs shuttle between the organelles. Furthermore, the SYP41/SYP61-residing compartment, which was defined as the TGN, was not always located along with the Golgi apparatus, suggesting that this compartment is an independent organelle distinct from the Golgi apparatus. We propose possible combinations of SNARE proteins on all subcellular compartments, and suggest the complexity of the post-Golgi membrane traffic in higher plant cells.  相似文献   

17.
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.  相似文献   

18.
Prevacuolar compartments (PVCs) are membrane-bound organelles that mediate protein traffic between Golgi and vacuoles in the plant secretory pathway. Here we identify and define organelles as the lytic prevacuolar compartments in pea and tobacco cells using confocal immunofluorescence. We use five different antibodies specific for a vacuolar sorting receptor (VSR) BP-80 and its homologs to detect the location of VSR proteins. In addition, we use well-established Golgi-markers to identify Golgi organelles. We further compare VSR-labeled organelles to Golgi organelles so that the relative proportion of VSR proteins in Golgi vs. PVCs can be quantitated. More than 90% of the BP-80-marked organelles are separate from Golgi organelles; thus, BP-80 and its homologs are predominantly concentrated on the lytic PVCs. Additionally, organelles marked by anti-AtPep12p (AtSYP21p) and anti-AtELP antibodies are also largely separate from Golgi apparatus, whereas VSR and AtPep12p (AtSYP21p) were largely colocalized. We have thus demonstrated in plant cells that VSR proteins are predominantly present in the lytic PVCs and have provided additional markers for defining plant PVCs using confocal immunofluorescence. Additionally, our approach will provide a rapid comparison between markers to quantitate protein distribution among various organelles.  相似文献   

19.
Kim H  Park M  Kim SJ  Hwang I 《The Plant cell》2005,17(3):888-902
Actin filaments are thought to play an important role in intracellular trafficking in various eukaryotic cells. However, their involvement in intracellular trafficking in plant cells has not been clearly demonstrated. Here, we investigated the roles actin filaments play in intracellular trafficking in plant cells using latrunculin B (Lat B), an inhibitor of actin filament assembly, or actin mutants that disrupt actin filaments when overexpressed. Lat B and actin2 mutant overexpression inhibited the trafficking of two vacuolar reporter proteins, sporamin:green fluorescent protein (GFP) and Arabidopsis thaliana aleurain-like protein:GFP, to the central vacuole; instead, a punctate staining pattern was observed. Colocalization experiments with various marker proteins indicated that these punctate stains corresponded to the Golgi complex. The A. thaliana vacuolar sorting receptor VSR-At, which mainly localizes to the prevacuolar compartment, also accumulated at the Golgi complex in the presence of Lat B. However, Lat B had no effect on the endoplasmic reticulum (ER) to Golgi trafficking of sialyltransferase or retrograde Golgi to ER trafficking. Lat B also failed to influence the Golgi to plasma membrane trafficking of H+-ATPase:GFP or the secretion of invertase:GFP. Based on these observations, we propose that actin filaments play a critical role in the trafficking of proteins from the Golgi complex to the central vacuole.  相似文献   

20.
Mutations in the VPS (vacuolar protein sorting) genes of Saccharomyces cerevisiae have been used to define the trafficking steps that soluble vacuolar hydrolases take en route from the late Golgi to the vacuole. The class D VPS genes include VPS21, PEP12, and VPS45, which appear to encode components of a membrane fusion complex involved in Golgi-to-endosome transport. Vps21p is a member of the Rab family of small Ras-like GTPases and shows strong homology to the mammalian Rab5 protein, which is involved in endocytosis and the homotypic fusion of early endosomes. Although Rab5 and Vps21p appear homologous at the sequence level, it has not been clear if the functions of these two Rabs are similar. We find that Vps21p is an endosomal protein that is involved in the delivery of vacuolar and endocytosed proteins to the vacuole. Vacuolar and endocytosed proteins accumulate in distinct transport intermediates in cells that lack Vps21p function. Therefore, it appears that Vps21p is involved in two trafficking steps into the prevacuolar/late endosomal compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号