首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The phycobilisome rod linker genes in the two closely related cyanobacteria Synechococcus sp. PCC 6301 and Synechococcus sp. PCC 7942 were studied. Southern blot analysis showed that the genetic organization of the phycobilisome rod operon is very similar in the two strains. The phycocyanin gene pair is duplicated and separated by a region of about 2.5 kb. The intervening region between the duplicated phycocyanin gene pair was cloned from Synechococcus sp. PCC 6301 and sequenced. Analysis of this DNA sequence revealed the presence of three open reading frames corresponding to 273, 289 and 81 amino acids, respectively. Insertion of a kanamycin resistance cassette into these open reading frames indicated that they corresponded to the genes encoding the 30, 33 and 9 kDa rod linkers, respectively, as judged by the loss of specific linkers from the phycobilisomes of the insertional mutants. Amino acid compositions of the 30 and 33 kDa linkers derived from the DNA sequence were found to deviate from those of purified 33 and 30 kDa linkers in the amounts of glutamic acid/glutamine residues. On the basis of similarity of the amino acid sequence of the rod linkers between Synechococcus sp. PCC 6301 and Calothrix sp. PCC 7601 we name the genes encoding the 30, 33 and 9 kDa linkers cpcH, cpcI and cpcD, respectively. The three linker genes were found to be co-transcribed on an mRNA of 3700 nucleotides. However, we also detected a smaller species of mRNA, of 3400 nucleotides, which would encode only the cpcH and cpcI genes. The 30 kDa linker was still found in phycobilisome rods lacking the 33 kDa linker and the 9 kDa linker was detected in mutants lacking the 33 or the 30 kDa linkers. Free phycocyanin was found in the mutants lacking the 33 or the 30 kDa linkers, whereas no free phycocyanin could be found in the mutant lacking the 9 kDa linker.Abbreviations PCC Pasteur Culture Collection - UTEX University of Texas Culture Collection The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank Nucleotide Sequence Databases under the accession number M94218  相似文献   

2.
Two new linker proteins were identified by peptide mass fingerprinting in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. The proteins were products of glr1262 and glr2806. Three tandem phycocyanin linker motifs similar to CpcC were present in each. The glr1262 product most probably functions as a rod linker connecting phycoerythrin and phycocyanin, while the glr2806 product may function as a rod-core linker. We have designated these two proteins CpeG and CpcJ, respectively. The morphology of phycobilisomes in G. violaceus has been reported to be a bundle-like shape with six rods, consistent with the proposed functions of these linkers.  相似文献   

3.
The complete genome sequence of Gloeobacter violaceus [Nakamura et al. (2003a, b) DNA Res 10:37–45, 181–201] allows us to understand better the structure of the phycobilisomes (PBS) of this cyanobacterium. Genomic analysis revealed peculiarities in these PBS: the presence of genes for two multidomain linker proteins, a core membrane linker with four repetitive sequences (REP domains), the absence of rod core linkers, two sets of phycocyanin (PC) α and β subunits, two copies of a rod PC associated linker (CpcC), and two rod cap associated linkers (CpcD). Also, there is one ferredoxin–NADP+ oxidoreductase with only two domains. The PBS proteins were investigated by gel electrophoresis, amino acid sequencing and peptide mass fingerprinting (PMF). The two unique multidomain linkers contain three REP domains with high similarity and these were found to be in tandem and were separated by dissimilar Arms. One of these, with a mass of 81 kDa, is found in heavy PBS fragments rich in PC. We propose that it links six PC hexamers in two parallel rows in the rods. The other unique linker has a mass of 91 kDa and is easily released from the heavy fragments of PBS. We propose that this links the rods to the core. The presence of these multidomain linkers could explain the bundle shaped rods of the PBS. The presence of 4 REP domains in the core membrane linker protein (129 kDa) was established by PMF. This core linker may hold together 16 AP trimers of the pentacylindrical core, or alternatively, a tetracylindrical core of the PBS of G. violaceus.  相似文献   

4.
5.
The recent availability of the whole genome of Synechococcus sp. strain WH8102 allows us to have a global view of the complex structure of the phycobilisomes of this marine picocyanobacterium. Genomic analyses revealed several new characteristics of these phycobilisomes, consisting of an allophycocyanin core and rods made of one type of phycocyanin and two types of phycoerythrins (I and II). Although the allophycocyanin appears to be similar to that found commonly in freshwater cyanobacteria, the phycocyanin is simpler since it possesses only one complete set of alpha and beta subunits and two rod-core linkers (CpcG1 and CpcG2). It is therefore probably made of a single hexameric disk per rod. In contrast, we have found two novel putative phycoerythrin-associated linker polypeptides that appear to be specific for marine Synechococcus spp. The first one (SYNW2000) is unusually long (548 residues) and apparently results from the fusion of a paralog of MpeC, a phycoerythrin II linker, and of CpeD, a phycoerythrin-I linker. The second one (SYNW1989) has a more classical size (300 residues) and is also an MpeC paralog. A biochemical analysis revealed that, like MpeC, these two novel linkers were both chromophorylated with phycourobilin. Our data suggest that they are both associated (partly or totally) with phycoerythrin II, and we propose to name SYNW2000 and SYNW1989 MpeD and MpeE, respectively. We further show that acclimation of phycobilisomes to high light leads to a dramatic reduction of MpeC, whereas the two novel linkers are not significantly affected. Models for the organization of the rods are proposed.  相似文献   

6.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain C-phycocyanin and allophycocyanin in a molar ratio of approximately 3.8:1, a minor biliprotein, allophycocyanin B, and nonpigmented polypeptides of 75, 33, 30, and 27 kilodaltons. A nitrosoguanidine-induced mutant AN112 produces altered phycobilisomes with the molar ratio of C-phycocyanin to allophycocyanin reduced to approximately 1.4:1 and without any of the 33- and 30-kilodalton polypeptides. The mutant and wild type phycobilisomes contain the same molar amount of the 75- and 27-kilodalton polypeptides relative to allophycocyanin. As seen by electron microscopy, the allophycocyanin-containing core of the mutant and of the wild type phycobilisomes appears the same. In some views of the core, each of the two core units in the mutant particles can be seen to consist of four discs approximately 3 nm thick. In wild type phycobilisomes five or six rods, made up of two to six stacked discs (11.5 X 6 nm) are attached to the core. In the mutant, no such rods are seen; rather, single disc-shaped elements, ranging from two to six in number, are found attached. Spectroscopic measurements show that the assembly form of phycocyanin in the mutant phycobilisomes differs from that in the wild type particles but reveal no difference in the organization of the core elements. These results indicate that the portions of the rod substructures of wild type phycobilisomes, beyond the disc proximal to the core, are made up of phycocyanin and the 33- and 30-kilodalton polypeptides. Emission from phycocyanin is a significant component in the fluorescence from isolated Synechococcus 6301 phycobilisomes and indicates an upper limit of 94% for the efficiency of energy transfer from phycocyanin to allophycocyanin and allophycocyanin B in these particles.  相似文献   

7.
Environmental parameters are known to affect phycobilisomes. Variations of their structure and relative composition in phycobiliproteins have been observed. We studied the effect of irradiance variations on the phycobilisome structure in the cyanobacterium Spirulina maxima and discovered the appearance of new polypeptides associated with the phycobilisomes under an increased light intensity. In high light, the six rods of phycocyanin associated with the central core of allophycocyanin contained only one to two phycocyanin hexamers instead of the two to three they contained in low light. The concomitant disappearance of a 33-kD linker polypeptide was observed. Moreover, in high light three polypeptides of 29, 30, and 47 kD, clearly unrelated to linkers, were found to be associated with the phycobilisome fraction: protein labeling showed that a specific association of these polypeptides was induced by high light. One polypeptide, at least, would play the role of a chaperone protein. Not only the synthesis of these proteins, which appeared slightly increased in high light, but also their association with phycobilisome structure are light intensity dependent.  相似文献   

8.
The structure and function of phycobilisomes in the rhodophyte Porphyridium sp. were investigated by comparing the properties of the wild type with a pigment mutant called C12. When grown under low light, cells of C12 were bright orange, while wild-type cells were deep red. The results obtained from a characterization of purified phycobilisomes of the mutant C12 led us to propose the existence in Porphyridium sp. phycobilisomes of two types of rods, some containing only phycoerythrin and others containing phycoerythrin bound to phycocyanin, which is in turn linked to the core by the linker LRC. By studying the partitioning of phycobiliproteins between phycobilisomes and pools of free phycobiliproteins, we found that phycocyanin in the C12 mutant was only present in the pool of free proteins and that its specific linker, LRC, was totally absent. Phycoerythrin was present in the free pool and in the purified phycobilisomes as well. One of the three specific phycoerythrin linkers γ was missing. In light of the fact that in the C12 mutant, the linker LRC is absent and that there is no phycocyanin bound to the phycobilisomes, we propose that the rods in the mutant contain only phycoerythrin. These phycobilisomes are nevertheless functional and exhibit an efficient excitation transfer from phycoerythrin directly to allophycocyanin. Electron microscopy showed the purified phycobilisomes of C12 to be less dense than those of the wild type. This change was attributed to the disappearance of the rods containing the combination phycocyanin/phycoerythrin. Light still regulates phycobiliprotein synthesis in the mutant, as shown by the change in the color of the culture, which turned green-yellow when cells were shifted from low light to high light growth conditions. Light also regulates the structure of the phycobilisomes, which have fewer rods under high light growth conditions.  相似文献   

9.
The gene encoding a phycocyanin-associated linker polypeptide of Mr 33000 from the cyanobacterium Synechococcus sp. PCC 7002 was found to be located adjacent and 3 to the genes encoding the and subunits of phycocyanin. The identity of this gene, designated cpcC, was proven by matching the amino-terminal sequence of the authentic polypeptide with that predicted by the nucleotide sequence. A cpcC mutant strain of this cyanobacterium was constructed. The effect of the mutation was to prevent assembly of half the total phycocyanin into phycobilisomes. By electron microscopy, phycobilisomes from this mutant were shown to contain rod substructures composed of a single disc of hexameric phycocyanin, as opposed to two discs in the wild type. It was concluded that the Mr 33000 linker polypeptide is required for attachment of the core-distal phycocyanin hexamer to the core-proximal one. Using absorption spectra of the wild type, CpcC, and phycocyanin-less phycobilisomes, the in situ absorbances expected for specific phycocyanin-linker complexes were calculated. These data confirm earlier findings on isolated complexes regarding the influence of linkers on the spectroscopic properties of phycocyanin.Abbreviations PC phycocyanin - PEC phycoerythrocyanin - AP allophycocyanin - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Linker polypeptides are abbreviated according to Glazer (1985). L infX supY refers to a linker having a mass Y, located at a position X in the phycobilisome, where X can be R (rod), RC (rod or core), C (core) or CM (core to membrane). When necessary, the abbreviation for a linker is appended with that of its associated phycobiliprotein. Thus, L infR sup34.5PEC is a rod linker of Mr 34 500 that is associated with phycoerythrocyanin  相似文献   

10.
Cyanobacterial phycobilisomes   总被引:2,自引:0,他引:2  
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.  相似文献   

11.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain the phycobiliproteins phycocyanin, allophycocyanin, and allophycocyanin B, and four major non pigmented polypeptides of 75, 33, 30, and 27 kdaltons. The molar ratio of phycocyanin to allophycocyanin in wild type phycobilisomes can be varied over about a two-fold range by alterations in culture conditions with parallel changes in the amounts of the 33 and 30 kdalton polypeptides whereas the levels of the 27 and 75 kdalton polypeptides do not vary. Two nitrosoguanidine-induced mutants, AN112 and AN135, produce abnormally small phycobilisomes, containing only 35 and 50% of the wild type level of phycocyanin. AN135 phycobilisomes contain less 33 kdalton polypeptide than wild type and the 30 kdalton polypeptide is only detected in phycobilisomes from cultures grown under conditions favoring high levels of phycocyanin. AN112 lacks both the 30 and 33 kdalton polypeptides and produces phycobilisomes of constant size and composition, independent of growth conditions. Both mutant phycobilisomes have wild type levels of 27 and 75 kdalton polypeptides relative to allophycocyanin and have normal energy transfer properties. These results indicate that modulation of phycobilisome size involves concurrent regulation of the levels of phycocyanin and of both the 30 and 33 kdalton polypeptides with no change in the composition of the allophycocyanin-containing core.Abbreviations LP cells cells grown under conditions favoring low p phycobiliprotein levels - HP cells cells grown under conditions favoring high phycobiliprotein levels - SDS sodium dodecylsulfate - EDTA ethylenediamine tetraacetic acid - NaK-PO4 NaH2PO4 titrated with K2HPO4 to a given pH A preliminary report of some of this work was presented at the 81st Annual Meeting of the American Society for Microbiology, Dallas, Texas, March 1981  相似文献   

12.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

13.
Cyanobacteria acclimate to changes in light by adjusting the amounts of different cellular compounds, for example the light-harvesting macromolecular complex. Described are the acclimatization responses in the light-harvesting system of the cyanobacterium Anacystis nidulans following a shift from high intensity, white light to low intensity, red light.

The phycocyanin and chlorophyll content and the relative amount of the two linker peptides (33 and 30 kilodaltons) in the phycobilisome were studied. Both the phycocyanin and chlorophyll content per cell increased after the shift, although the phycocyanin increased relatively more. The increase in phycocyanin was biphasic in nature, a fast initial phase and a slower second phase, while the chlorophyll increase was completed in one phase. The phycocyanin and chlorophyll responses to red light were immediate and were completed within 30 and 80 hours for chlorophyll and phycocyanin, respectively. An immediate response was also seen for the two phycobilisome linker peptides. The amount of both of them increased after the shift, although the 33 kilodalton linker peptide increased faster than the 30 kilodalton linker peptide. The increase of the content of the two linker peptides stopped when the phycocyanin increase shifted from the first to the second phase. We believe that the first phase of phycocyanin increase was due mainly to an increase in the phycobilisome size while the second phase was caused only by an increase in the amount of phycobilisomes. The termination of chlorophyll accumulation, which indicates that no further reaction center chlorophyll antennae were formed, occurred parallel to the onset of the second phase of phycocyanin accumulation.

  相似文献   

14.
We have identified the function of the `extra' polypeptides involved in phycobilisome assembly in Nostoc sp. These phycobilisomes, as those of other cyanobacteria, are composed of an allophycocyanin core, phycoerythrin- and phycocyanin-containing rods, and five additional polypeptides of 95, 34.5, 34, 32, and 29 kilodaltons. The 95 kilodalton polypeptide anchors the phycobilisome to the thylakoid membrane (Rusckowski, Zilinskas 1982 Plant Physiol 70: 1055-1059); the 29 kilodalton polypeptide attaches the phycoerythrin- and phycocyanin-containing rods to the allophycocyanin core (Glick, Zilinskas 1982 Plant Physiol 69: 991-997). Two populations of rods can exist simultaneously or separately in phycobilisomes, depending upon illumination conditions. In white light, only one type of rod with phycoerythrin and phycocyanin in a 2:1 molar ratio is synthesized. Associated with this rod are the 29, 32, and 34 kilodalton colorless polypeptides; the 32 kilodalton polypeptide links the two phycoerythrin hexamers, and the 34 kilodalton polypeptide attaches a phycoerythrin hexamer to a phycocyanin hexamer. The second rod, containing predominantly phycocyanin, and the 34.5 and 29 kilodalton polypeptides, is synthesized by redlight-adapted cells; the 34.5 kilodalton polypeptide links two phycocyanin hexamers. These assignments are based on isolation of rods, dissociation of these rods into their component biliproteins, and analysis of colorless polypeptide composition, followed by investigation of complexes formed or not formed upon their recombination.  相似文献   

15.
Synechocystis 6701 phycobilisomes contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ratio of approximately 2:2:1, and other polypeptides of 99-, 46-, 33.5-, 31.5-, 30.5-, and 27-kdaltons. Wild- type phycobilisomes consist of a core of three cylindrical elements in an equilateral array surrounded by a fanlike array of six rods each made up of 3-4 stacked disks. Twelve nitrosoguanidine-induced mutants were isolated which produced phycobilisomes containing between 0 and 53% of the wild-type level of phycoerythrin and grossly altered levels of the 30.5- and 31.5-kdalton polypeptides. Assembly defects in these mutant particles were shown to be limited to the phycoerythrin portions of the rod substructures of the phycobilisome. Quantitative analysis of phycobilisomes from wild-type and mutant cells, grown either in white light or chromatically adapted to red light, indicated a molar ratio of the 30.5- and 31.5-kdalton polypeptides to phycoerythrin of 1:6, i.e., one 30.5- or one 31.5-kdaltons polypeptide per (alpha beta)6 phycoerythrin hexamer. Presence of the phycoerythrin-31.5-kdalton complex in phycobilisomes did not require the presence of the 30.5- kdalton polypeptide. The converse situation was not observed. These and earlier studies (R. C. Williams, J. C. Gingrich, and A. N. Glazer. 1980. J. Cell Biol. 85:558-566) show that the average rod in wild type Synechocystis 6701 phycobilisomes consists of four stacked disk-shaped complexes: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6-31.5 kdalton, and phycoerythrin-30.5 kdalton, listed in order starting with the disk proximal to the core.  相似文献   

16.
The phycobilisomes of the unicellular cyanobacterium Synechocystis 6701, grown in white light, contain C-phycoerythrin, C-phycocyanin, and allophycocyanin in a molar ration of approximately 2:2:1, and in addition, polypeptides of 99, 46, 33.5, 31.5, 30.5, and 27 x 10(3) Daltons, as well as a trace of a approximately 9 x 10(3)-dalton component. Two nitrosoguanidine-induced mutants of this organism produce aberrant phycobilisomes. Crude cell extracts of these mutants, 6701-NTG25 and NTG31, contain phycoerythrin, phycocyanin, and allophycocyanin in a molar ration of 1:5:1:1 and 0.55:0.3:1.0, respectively. The phycobilisomes from both mutants lack the 33.5 x 10(3)-dalton polypeptide. Wile-type phycobilisomes consist of a core composed of an equilateral array of three cylindrical elements surrounded by six rods in a fanlike arrangement. The rods are made up of stacked disks, 11 nm in diameter and 6 nm thick. In phycobilisomes of mutant 6701-NTG25, numerous particles with fewer than six rods are seen. Mutant 6701-NTG31 produces incomplete structures that extend from triangular core particles, through cores with one or two attached rods, to cores with as many as five rods. The structure of the core appears unaltered throughout. The amount of phycocyanin (relative to allophycocyanin) appears to determine the number of rods per core. A common assembly form seen in 6701-NTG31 is the core with two rods attached at opposite sides. From observations of this form, it is concluded that the core elements are cylindrical, with a height of 14 nm and a diameter of 11 nm. No consistently recognizable structural details are evident within the core elements.  相似文献   

17.
The phycobilisome light-harvesting antenna in cyanobacteria and red algae is assembled from two substructures: a central core composed of allophycocyanin surrounded by rods that always contain phycocyanin (PC). Unpigmented proteins called linkers are also found within the rods and core. We present here two new structures of PC from the thermophilic cyanobacterium Thermosynechococcus vulcanus. We have determined the structure of trimeric PC to 1.35 Å, the highest resolution reported to date for this protein. We also present a structure of PC isolated in its intact and functional rod form at 1.5 Å. Analysis of rod crystals showed that in addition to the α and β PC subunit, there were three linker proteins: the capping rod linker (LR8.7), the rod linker (LR), and only one of three rod-core linkers (LRC, CpcG4) with a stoichiometry of 12:12:1:1:1. This ratio indicates that the crystals contained rods composed of two hexamers. The crystallographic parameters of the rod crystals are nearly identical with that of the trimeric form, indicating that the linkers do not affect crystal packing and are completely embedded within the rod cavities. Absorption and fluorescence emission spectra were red-shifted, as expected for assembled rods, and this could be shown for the rod in solution as well as in crystal using confocal fluorescence microscopy. The crystal packing imparts superimposition of the three rod linkers, canceling out their electron density. However, analysis of B-factors and the conformations of residues facing the rod channel indicate the presence of linkers. Based on the experimental evidence presented here and a homology-based model of the LR protein, we suggest that the linkers do not in fact link between rod hexamers but stabilize the hexameric assembly and modify rod energy absorption and transfer capabilities.  相似文献   

18.
19.
Mutations affecting pigmentation of the cyanobacterium Synechocystis sp. 6701 were induced with ultraviolet light. Two mutants with phycobilisome structural changes were selected for structural studies. One mutant, UV08, was defective in chromatic adaptation and incorporated phycoerythrin into phycobilisomes in white or red light at a level typical of growth in green light. The other mutant, UV16, was defective in phycobilisome assembly: little phycocyanin was made and none was attached to the phycobilisome cores. The cores were completely free of any rod substructures and contained the major core peptides plus the 27,000 Mr linker peptide that attaches rods to the core. Micrographs of the core particles established their structural details. Phycoerythrin in UV 16 was assembled into rod structures that were not associated with core material or phycocyanin. The 30,500 Mr and 31,500 Mr linker peptides were present in the phycoerythrin rods with the 30,500 Mr protein as the major component. Phycobilisome assembly in vivo is discussed in light of this unusual mutant.Abbreviations PE phycoerythrin - PC phycocyanin - AP allophycocyanin - W white light - G green light - R red light - SDS sodium dodecyl sulfate - Na–K–PO4 equimolar solutions of NaH2PO4 · H2O and K2HPO4 · 3 H2O titrated to the desired pH  相似文献   

20.
A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号