首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.  相似文献   

2.
PURPOSE OF REVIEW: Decades of literature have unambiguously demonstrated regression and remodeling of atherosclerotic lesions, including advanced plaques. Recent insights into underlying mechanisms are reviewed. RECENT FINDINGS: Factors promoting regression include decreased apolipoprotein B-lipoprotein retention within the arterial wall, efflux of cholesterol and other harmful lipids from plaques, and emigration of lesional foam cells followed by entry of healthy phagocytes that remove necrotic debris and other plaque components. Cellular lipid efflux and foam cell emigration can occur surprisingly rapidly once the plaque milieu is improved. Lipid efflux and foam cell emigration each involve specific molecular mediators, many of which have been identified. Necrotic debris removal can be surprisingly comprehensive, with essentially full disappearance documented in animal models. SUMMARY: The essential prerequisite for regression is robust improvement in plaque milieu, meaning large plasma reductions in atherogenic apolipoprotein B-lipoproteins or brisk enhancements in 'reverse' lipid transport from plaque into liver. Importantly, the processes of regression are consistent with rapid correction of features characteristic of the rupture-prone, vulnerable plaques responsible for acute coronary syndromes. New interventions to lower apolipoprotein B-lipoprotein levels and enhance reverse lipid transport may allow regression to become a widespread clinical goal. Strategies based on recent mechanistic insights may facilitate further therapeutic progress.  相似文献   

3.
Apoptosis occurring in atherosclerotic lesions has been suggested to be involved in the evolution and the structural stability of the plaques. It is still a matter of debate whether apoptosis mainly involves vascular smooth muscle cells (vSMCs) in the fibrous tissue or inflammatory (namely foam) cells, thus preferentially affecting the cell-poor lipid core of the atherosclerotic plaques. The aim of the present investigation was to detect the presence of apoptotic cells and to estimate their percentage in a series of atherosclerotic plaques obtained either by autopsy or during surgical atherectomy. Apoptotic cells were identified on paraffin-embedded sections on the basis of cell nuclear morphology after DNA staining and/or by cytochemical reactions (TUNEL assay, immunodetection of the proteolytic poly (ADP-ribose) polymerase-1 [PARP-1] fragment); biochemical procedures (identifying DNA fragmentation or PARP-1 proteolysis) were also used. Indirect immunofluorescence techniques were performed to label specific antigens for either vSMCs or macrophages (i.e., the cells which are most likely prone to apoptosis in atherosclerotic lesions): the proper selection of fluorochrome labeling allowed the simultaneous detection of the cell phenotype and the apoptotic characteristics, by multicolor fluorescence techniques. Apoptotic cells proved to be less than 5% of the whole cell population, in atherosclerotic plaque sections: this is, in fact, a too low cell fraction to be detected by widely used biochemical methods, such as agarose gel electrophoresis of low-molecular-weight DNA or Western-blot analysis of PARP-1 degradation. Most apoptotic cells were of macrophage origin, and clustered in the tunica media, near or within the lipid-rich core; only a few TUNEL-positive cells were labeled for antigens specific for vSMCs. These results confirm that, among the cell populations in atherosclerotic plaques, macrophage foam-cells are preferentially involved in apoptosis. Their death may decrease the cell number in the lipid core and generate a possibly defective apoptotic clearance: the resulting release of matrix-degrading enzymes could contribute to weakening the fibrous cap and promote the plaque rupture with the risk of acute ischemic events, while increasing the thrombogenic pultaceous pool of the plaque core.  相似文献   

4.
Increased cell proliferation in early atherosclerotic lesions is recognized as an essential event of atherogenesis but the levels of cell proliferation in different stages of atherosclerotic plague formation in different types of human large arteries are still insufficiently studied. In the present work, we studied intima thickness and proliferation of newly "infiltrates" hematogenous and resident cells in atherosclerotic lesions of the carotid and coronary arteries and compared these parameters with those in the aorta, reported by us in earlier publication. Analysis of intima thickness and proliferation in grossly unaffected intima and in different types pf atherosclerotic lesions (initial lesions, fatty streaks, lipofibrous, plaques, and fibrous plaque) revealed that although there were similar tendencies in the change of the infiltration levels of hematogenous cells and proliferation in different types of arteries, there were significant quantitative differences between different types of arteries. Hematogenous cells in lipofibrous plaques of the coronary and carotid arteries were found to account for a third and almost for a half of the total cell population, respectively, while atherosclerotic lesions in the aorta, as it has been shown by us earlier, to contain no more than 15% ofhematogenous cells. This suggests that the contribution of hematogenous cells to the development of atherosclerosis in the carotid and the coronary artery appears to be more significant than that in the aorta. Despite the differences in numbers of accumulating hematogenous cells in the intima, a similar "bell-shaped" dependence of cell numbers on the lesion type, involved in the following sequence: unaffected intima-initial lesions-fatty streaks-lipofibrous plaques-fibrous plaques, was detected in the coronary and carotid arteries. The visualization of proliferating cells (PCNA-positive) in atherosclerotic and unaffected zones of the coronary and carotid arteries revealed similar patterns. The maximum numbers of PCNA-positive resident cells were identified in lipofibrous plaques. The changes in the total cell numbers were accompanied by the changes in the numbers of both proliferating resident cells and proliferating hematogenous cells.  相似文献   

5.
Identification of high-risk atherosclerotic lesions prone to rupture and thrombosis may greatly decrease the morbidity and mortality associated with atherosclerosis. High-resolution magnetic resonance imaging (MRI) has recently emerged as one of the most promising techniques for the non-invasive study of atherothrombotic disease, as it can characterize plaque composition and monitor its progression. The development of MRI contrast agents that specifically target components of the atherosclerotic plaque may enable non-invasive detection of high-risk lesions. This review discusses the use of high-resolution MRI for plaque detection and characterization and the potentials of "Molecular Imaging" using a variety of molecules present in atherosclerotic plaques that may serve as targets for specific contrast agents to allow the identification of high-risk atherosclerotic lesions in-vivo. Ultimately, such agents may enable treatment of "high-risk" patients prior to lesion progression and occurrence of complications.  相似文献   

6.
Atherosclerosis is the most common cause of mortality in the Western world, contributing to about 50% of all deaths. Atherosclerosis is characterized by deposition of lipids onto the coronary or carotid arterial wall and formation of an atherosclerotic plaque. Atherosclerotic plaques are categorized into two groups: symptomatic and asymptomatic. The symptomatic plaques tend to be unstable and prone to rupture, and are associated with an increase in ischemic events. Oxysterols, products of cholesterol oxidation, are cytotoxic materials. Their level and type may be associated with plaque formation, development and stability. Oxysterols stimulate the formation of foam cells, advance atherosclerotic plaque progression, and contribute to plaque vulnerability and instability due to their cytotoxicity and their ability to induce cell apoptosis. Studies indicate that plasma 7β-OH CH level can be used as a biomarker for detecting carotid and coronary artery disease. Further clinical studies are needed to evaluate the potential of oxysterols for use as biomarkers for plaque vulnerability and instability. The identification of biomarkers in the blood that can distinguish between symptomatic and asymptomatic plaques remains an unresolved issue.  相似文献   

7.
Apoptotic cell death in atherosclerosis   总被引:16,自引:0,他引:16  
PURPOSE OF REVIEW: Apoptosis is a critical regulator of homeostasis in many tissues, including the vasculature. Apoptosis in atherosclerotic lesions is triggered by inflammatory processes, both via cell-cell contact and by cytokines and oxidized lipids. Apoptosis of vascular smooth muscle cells, endothelial cells and macrophages may promote plaque growth and pro-coagulation and may induce rupture, the major consequence of atherosclerosis in humans. RECENT FINDINGS: Studies over the past year have clearly demonstrated the significance of cell death in atherosclerosis. Some of the key cellular, cytokine and molecular regulators that contribute to the apoptosis of cells within the atherosclerotic lesion have been identified and their mechanism of action elucidated. Other studies have shed some light on the identity of cells whose loss by apoptosis contributes to plaque instability. SUMMARY: The identification of which cell types undergo apoptosis within the atherosclerotic lesion, the extracellular factors that impinge on these cells, and the intracellular mechanisms that govern their demise have begun to be elucidated. This information is critical in the design of further in-vivo experiments such as the exploitation of animal models, and ultimately, in applying this knowledge to clinical practice.  相似文献   

8.
Echolucent rupture-prone plaques   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Routine measurement of echolucency of atherosclerotic plaques, in addition to degree of stenosis, may change clinical practice in the future. Within the context of previous knowledge in this field, we therefore review recent developments in detection and histological characterization of echolucent rupture-prone plaques and risk for ischaemic events associated with them, as well as risk factors and treatment for such plaques. RECENT FINDINGS: Plaque echolucency is associated with increased lipid content and macrophage density (and sometimes haemorrhage), whereas fibrous tissue (and sometimes calcification) dominates echo-rich plaques. Echolucent carotid plaques are associated with higher risk for future ischaemic stroke, particularly in previously symptomatic individuals, and possibly with risk for restenosis after endarterectomy as well as myocardial infarction. These plaques also associate with elevated levels of triglyceride-rich lipoproteins (and with reduced levels of HDL), but not with elevated levels of LDL or acute phase reactants. Risk factor intervention may be more beneficial for patients with echolucent plaques than in those with echo-rich plaques, whereas coronary stenting may be less efficient in patients with echolucent plaques. SUMMARY: If it is to be clinically useful, then the ultrasound method must be further improved such that it may accurately detect echolucent rupture-prone plaques in the individual patient. Furthermore, the possible superior benefit from preventive treatments deployed selectively in patients with echolucent plaques must be better documented in large randomized trials. When these two requirements are met, routine measurement of plaque echolucency could change clinical practice with respect to the preventive treatments that are offered to patients with echolucent plaques as compared with those without such plaques.  相似文献   

9.
Intimal cell death has been a recognized feature of advanced atherosclerotic disease. With the advent of DNA in situ end labelling and/or ultrastructural techniques, recent findings suggest that cells of an atheroma undergo programmed cell death or apoptosis. The pathophysiologic relevance of apoptosis in atherosclerotic disease is debatable. Apoptotic cell death may influence lesion progression and thus reduce overall plaque burden. Alternatively, apoptosis may prove a means of quenching the inflammation, converting cellular-rich lesions to so-called stable fibrous hypocellular plaques or conversely weaken the fibrous cap causing plaque rupture, a major cause of acute coronary syndromes. Apoptotic cells within plaques are typically macrophages, smooth muscle cells and T-cells and the frequency of death varies in the different regions of the lesion. The precise signalling pathways of apoptosis in plaques are unknown. There is however, some evidence that production of immune cytokines may promote apoptosis through activation of the Fas ligand-mediated death pathway. Genetic signals that regulate apoptosis in the atheroma, at least in smooth muscle cells, may involve the tumour suppressor genes p105 RB and p53. Further studies as to the relevance of apoptosis in acute coronary syndromes and potential mechanisms are emerging.  相似文献   

10.
The localization of lipoprotein lipase (LPL) in human atherosclerotic lesions was studied with immunocytochemical techniques. In the fibrous cap and surrounding intima of the plaque, where the smooth muscle cell is the dominating cell type, a high number of cells reacted with anti-LPL. A much lower number of stained cells was seen in the central lipid core region where the macrophages dominate. Further characterization of the LPL-containing cells in tissue sections showed that most of them were smooth muscle cells. Only a minor fraction of the macrophages in the plaque contained the enzyme. The results were confirmed on isolated cells from atherosclerotic tissue. Lipoprotein lipase was also detected in smooth muscle cells of non-atherosclerotic arteries. These findings suggest that the smooth muscle cells are the major source of LPL in the vascular wall. However, the enzyme was not present in some of the smooth muscle cells in the atherosclerotic lesion. This may imply that LPL synthesis is down-regulated in the atherosclerotic plaque.  相似文献   

11.
PURPOSE OF REVIEW: Rupture of an atherosclerotic plaque is the predominant underlying event in the pathogenesis of acute coronary syndromes and stroke. While ruptured plaques are morphologically well described, the precise molecular mechanisms involved in plaque rupture are still incompletely understood. Over the last few years, techniques like microarray, suppression subtractive hybridization and differential display enabled us to study complex gene expression profiles that occur during the process of atherogenesis. In this review we focus on recent large-scale gene expression profiles performed on whole mount vascular specimens. RECENT FINDINGS: The gene expression profiles on whole mount vascular tissue confirmed that at least three mechanisms are involved in plaque rupture: (1) a disturbed balance in extracellular matrix turnover, (2) disturbed regulation of cell turnover and (3) processes involved in lipid metabolism. Animal models exhibiting features of plaque rupture reflect the involvement of these three mechanisms. The most dramatic mouse phenotypes were observed after interventions in at least two of these mechanisms. SUMMARY: The observation of plaque rupture in recent mice models is indicative of the multifactorial process of plaque rupture. This multifactorial character of plaque rupture suggests that interventions may be most effective when they influence more than one mechanisms at a time.  相似文献   

12.
Morbidity and mortality from atherosclerosis are associated with complicated atherosclerotic lesions due to plaque rupture, which is regulated by a balance between proliferation and apoptosis of vascular smooth muscle cells (VSMC). We examined insulin-like growth factor-1 (IGF-1)-induced survival of plaque VSMC from carotid endarterectomy specimens and investigated the underlying cellular mechanisms in the presence and absence of IL-12 and IFN-gamma. Both IL-12 and IFN-gamma were strongly expressed in symptomatic atherosclerotic plaques as compared with asymptomatic plaques. In asymptomatic plaque VSMC, IGF-1 induced the survival and proliferation of VSMC and accelerated VSMC into S-phase. IL-12 or IFN-gamma inhibited proliferation and VSMC were arrested in the G0-G1 phase. IGF-1 markedly inhibited the expression of p27(kip) and p21(cip) and significantly induced cyclin E and cyclin D. Both cytokines by themselves increased the expression of p27(kip) and p21(cip) and inhibited cyclin E and cyclin D. On the contrary, in symptomatic VSMC there was already increased apoptosis of VSMC and there was no significant effect of IGF-1 or inflammatory cytokines on proliferation, apoptosis or the expression of p27(kip) and p21(cip) and cyclin D and E. These data suggest that IGF-1 is more potent in inducing the survival of VSMC from the endarterectomy specimens of asymptomatic patients as compared to that of symptomatic subjects and cytokines associated with atheroma lesions decrease the activity of IGF-1-induced survival in the VSMC of asymptomatic plaques. The different expression and activity of cell cycle regulatory proteins could be responsible for apoptosis of VSMC and destabilization of atherosclerotic plaques.  相似文献   

13.
PURPOSE OF REVIEW: A novel link between inflammation and acute coronary syndromes is emerging, in that infiltrating inflammatory cells may convert a clinically silent coronary plaque into a dangerous and potentially lethal plaque. The majority of acute atherothrombotic events now relate to erosion or rupture of such unstable plaques. Here we summarize the molecular mechanisms by which activated mast cells may contribute to plaque erosion or rupture. RECENT FINDINGS: In-vitro experiments have revealed a multitude of paracrine effects exerted by activated mast cells. By secreting heparin proteoglycans and chymase, activated mast cells efficiently inhibit the proliferation of smooth muscle cells in vitro, and reduce their ability to produce collagen by a transforming growth factor beta-dependent and -independent mechanism. Mast cell chymase and tryptase are capable of activating matrix metalloproteinases types 1 and 3, causing degradation of the extracellular matrix component, collagen, necessary for the stability of the plaque. Activated mast cells also secrete matrix metalloproteinases types 1 and 9 themselves. Furthermore, chymase induces SMC apoptosis by degrading fibronectin, a pericellular matrix component necessary for SMC adhesion and survival, with the subsequent disruption of focal adhesions and loss of outside-in survival signaling. By secreting chymase and tumour necrosis factor alpha, activated mast cells also induce endothelial cell apoptosis. SUMMARY: Locally activated mast cells may participate in the weakening of atherosclerotic plaques by secreting heparin proteoglycans, chymase, and cytokines, which affect the growth, function and death of arterial endothelial cells and smooth muscle cells, thereby predisposing to plaque erosion or rupture.  相似文献   

14.
Atherosclerosis is a chronic inflammatory disease of the vasculature. There are various methods to study the inflammatory compound in atherosclerotic lesions. Mouse models are an important tool to investigate inflammatory processes in atherogenesis, but these models suffer from the phenotypic and functional differences between the murine and human immune system. In vitro cell experiments are used to specifically evaluate cell type-dependent changes caused by a substance of interest, but culture-dependent variations and the inability to analyze the influence of specific molecules in the context of the inflammatory compound in atherosclerotic lesions limit the impact of the results. In addition, measuring levels of a molecule of interest in human blood helps to further investigate its clinical relevance, but this represents systemic and not local inflammation. Therefore, we here describe a plaque culture model to study human atherosclerotic lesion biology ex vivo. In short, fresh plaques are obtained from patients undergoing endarterectomy or coronary artery bypass grafting and stored in RPMI medium on ice until usage. The specimens are cut into small pieces followed by random distribution into a 48-well plate, containing RPMI medium in addition to a substance of interest such as cytokines or chemokines alone or in combination for defined periods of time. After incubation, the plaque pieces can be shock frozen for mRNA isolation, embedded in Paraffin or OCT for immunohistochemistry staining or smashed and lysed for western blotting. Furthermore, cells may be isolated from the plaque for flow cytometry analysis. In addition, supernatants can be collected for protein measurement by ELISA. In conclusion, the presented ex vivo model opens the possibility to further study inflammatory lesional biology, which may result in identification of novel disease mechanisms and therapeutic targets.  相似文献   

15.
The intima of the adult human aorta consists of three sublayers: a muscular layer lying next to the media, a median hyperplastic layer and an innermost connective tissue layer, adjoining the lumen. The cells inhabiting these sublayers were isolated by the method of alcoholic-alkaline dissociation from grossly normal areas, fatty streaks and atherosclerotic plaques. The populations obtained contained cells with different numbers of cytoplasmic inclusions and a number without any. In unaffected intima and in fatty streaks, the cells with lipid inclusions were found predominantly in the outermost intimal layer including the connective tissue and in part of the median hyperplastic layer. In the superficial layer of unaffected intima and the fatty streak, these cells accounted for 15 and 25% of the total cell population, respectively. In the plaque, most cells with lipid inclusions were localized in the median hyperplastic layer of the intima (10%). The muscular layer was characterized by the lowest content of cells with lipid inclusions both in the unaffected intima and atherosclerotic lesions (from 0.75% in unaffected intima to 5% plaques). Among the intimal smooth muscle cells of various shapes, the cells with lipid inclusions were most often found in the stellate cell subpopulation (5-35%). A possible role of stellate cells in atherogenesis is discussed.  相似文献   

16.
目的:观察ApoE基因敲除(ApoE gene knock out,ApoE-/-)小鼠主动脉窦动脉粥样硬化斑块超微结构改变,泡沫细胞凋亡,探讨葛根总黄酮(Total Flavone of Radix Puerariae,TFRP)的干预作用。方法:将16只Apo E-/-小鼠随机分为模型组及TFRP干预组(85 mg/kg.d),每组8只,2只C57BL/6J小鼠作为空白对照,12周后处死,用酶法检测二组血清脂质含量,采用光学显微镜、电子显微镜观察As斑块形态及泡沫细胞凋亡。结果:(1)两组血清总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)及高密度脂蛋白胆固醇(HDL-C)水平未见显著性差异;(2)光镜观察:模型组可见成熟的As斑块形成,部分斑块脂质核心较大,偏心性,纤维帽较薄,纤维帽内有较多炎症细胞浸润,平滑肌细胞成分少,肩部较薄弱,呈不稳定斑块形成趋势,在斑块脂质核心内可见到较多凋亡细胞;而TFRP干预组未见不稳定斑块,斑块脂质核心小,平滑肌细胞数目较多,纤维帽较厚,斑块内凋亡细胞数明显少于模型组(p<0.05)。(3)电镜观察:模型组斑块内以平滑肌源性泡沫细胞多见,可见中晚期凋亡细胞,细胞外基质成分较少;与模型组相比,TFRP干预组以巨噬细胞源性泡沫细胞多见,可见少数早期凋亡细胞,细胞外胶原纤维明显增多。结论:模型组病变处于中晚期As病变,符合泡沫细胞凋亡特征;TFRP干预抑制了ApoE基因敲除小鼠主动脉窦As斑块内泡沫细胞凋亡。  相似文献   

17.
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people''s lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.  相似文献   

18.
Macrophages play a pivotal role in atherosclerotic plaque destabilization in contrast to smooth muscle cells (SMCs). As a consequence, removal of macrophages from plaques via selective induction of cell death represents a promising approach to stabilize non-obstructive, rupture-prone atherosclerotic lesions. However, the mechanisms to initiate cell death in macrophages but not in other cell types of the plaque, in particular SMCs, are unknown. Recently, we have shown that the pan-caspase inhibitor z-VAD-fmk induces autophagy and necrotic cell death in J774A.1 and RAW264.7 macrophages as well as in IFN-gamma primed primary mouse peritoneal macrophages, but not in vascular SMCs or C2C12 myoblasts. The different sensitivity to z-VAD-fmk is largely based on differential expression of receptor-interacting protein 1 (RIP1). This finding suggests that caspase inhibition activates RIP1 which in turn initiates autophagy, although other explanations should be taken into account. z-VAD-fmk-treated J774A.1 macrophages overexpress and secrete several chemokines and cytokines, including TNFalpha. The combination of z-VAD-fmk and TNFalpha, but not TNFalpha alone, induces SMC necrosis. In this regard, z-VAD-fmk is detrimental and not beneficial for atherosclerotic plaque stability due to stimulation of inflammatory responses and indirect induction of SMC death. Future work is needed to determine the mechanism(s) that selectively trigger non-apoptotic cell death in plaque macrophages without evoking inflammation and SMC death.  相似文献   

19.
We previously reported that CD1d, a molecule responsible for the presentation of lipid antigens, is expressed in atherosclerotic lesions and that its expression is restricted to dendritic cells. Recent studies demonstrating that CD1d-restricted natural killer T (NKT) cells are involved in atherogenesis prompted the present study investigating whether NKT cells are present in human atherosclerotic lesions and, if so, whether there is an association between NKT cells and dendritic cells. We found that NKT cells do accumulate in rupture-prone shoulders of atherosclerotic plaques and observed direct contacts of dendritic cells with NKT cells in rupture-prone regions of plaque.  相似文献   

20.
Inflammation in carotid atherosclerotic plaque is linked to plaque rupture and cerebrovascular accidents. The balance between pro- and anti-inflammatory mediators governs development of the plaque, and may mediate enhancement of lesion broadening or, on the contrary, delay progression. In addition to macrophages and endothelial cells, smooth muscle cells (SMCs), which are the dominant cell subset in advanced plaques, are crucial players in carotid atherosclerosis development given their ability to differentiate into distinct phenotypes in reponse to specific signals received from the environment of the lesion. Carotid atheroma SMCs actively contribute to the inflammation in the lesion because of their acquired capacity to produce inflammatory mediators. We review the successive stages of carotid atheroma plaque formation via fatty streak early-stage toward more advanced rupture-prone lesions and document involvement of cytokines and chemokines and their cellular sources and targets in plaque progression and rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号