首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl‐CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl‐CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine‐tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.  相似文献   

2.
Previously it was shown that gramicidin can induce HII phase formation in diacylphosphatidylcholine model membranes only when the lipid acyl chain length exceeds 16 carbon atoms (Van Echteld, C.J.A., De Kruijff, B., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1982) Biochim. Biophys. Acta 692, 126-138). Using 31P-NMR and small angle X-ray diffraction we now demonstrate that upon increasing the length of gramicidin, the peptide loses its ability to induce HII phase formation in di-C18:1c-PC but not in the longer chained di-C22:1c-PC. It is concluded that a mismatch in length between gramicidin and the lipid acyl chains, when the latter would provide excess bilayer thickness, is a prerequisite for HII phase formation in phosphatidylcholine model membranes.  相似文献   

3.
The second messenger, diacylglycerol (DAG), introduces negative curvature in phospholipid monolayers and strongly induces the lamellar (L(alpha)) to reverse hexagonal (H(II)) phase transition. The chain lengths and degree of unsaturation of symmetric DAGs influence this effect. Within dioleoylphosphatidylcholine (DOPC) monolayers, the apparent spontaneous radius of curvature (R(0)) of the short, saturated dicaprylglycerol (C10-DCG) itself was determined to be -13.3 A, compared with an R(0) value of -10.1 A for the long, di-monounsaturated dioleoylglycerol (C18-DOG). Such increased length and unsaturation of the DAG acyl chains produces this small change. Di-saturated phosphatidylcholines (PCs) with equal length chains (from C10-C18) with 25 mol % DOG do not form the H(II) phase, even under the unstressed conditions of excess water and alkane. Di-unsaturated PCs with equal chain length (from C14-C18) with 25 mol % DOG do form the H(II) phase. Asymmetric chained PCs (position 1 saturated with varying lengths, position 2 differentially unsaturated with varying lengths) all form the H(II) phase in the presence of 25 mol % DOG. As a general rule for PCs, their unsaturation is critical for the induction of the H(II) phase by DOG. The degree of curvature stress induced by the second messenger DOG in membranes, and any protein that might be affected by it, would appear to depend on chain unsaturation of neighboring PCs.  相似文献   

4.
Acyl chain-labeled NBD-phosphatidylcholine (NBD-PC) has been used to identify three gene products (Lem3p, Dnf1p, and Dnf2p) that are required for normal levels of inward-directed phospholipid transport (flip) across the plasma membrane of yeast. Although the head group structure of acyl chain-labeled NBD phospholipids has been shown to influence the mechanism of flip across the plasma membrane, the extent to which the acyl chain region and the associated fluorophore affect flip has not been assessed. Given the identification of these proteins required for NBD-PC flip, it is now possible to determine whether the fluorophore attached to a phospholipid acyl chain influences the mechanism of flip. Thus, flip of phosphatidylcholine molecules with three different Bodipy fluorophores (Bodipy FL, Bodipy 530, and Bodipy 581) was tested and compared with that of NBD-PC in strains carrying deletions in LEM3, DNF1, and DNF2. Deletion of these genes significantly reduced the flip of NBD-PC and Bodipy FL-PC but had no effect on that of Bodipy 581-PC and Bodipy 530-PC. These data, in combination with comparisons of the effect of ATP depletion, collapse of the proton electrochemical gradient across the plasma membrane, and culture density led to the conclusion that at least three different flip pathways exist in yeast that are selective for the structure of the fluorophore attached to the acyl chain of phosphatidylcholine molecules.  相似文献   

5.
The enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine via a transmethylation pathway has not been shown to occur in the small intestine and has been assumed to be absent from the entire gut. The existence of this pathway, however, has not been investigated in the large intestine. Utilizing a recently developed method for the isolation of brush-border membranes from rat colonocytes, the present studies were designed to determine whether phospholipid methylation activity was present in the large intestine. The results demonstrate that this pathway for synthesis of phosphatidylcholine exists in rat colonic plasma membranes and involves at least two distinct methyltransferases. The predominant product of the first enzyme (methyltransferase I) is phosphatidyl-N-monomethylethanolamine; phosphatidylcholine and phosphatidyl-N-monomethylethanolamine are the principal products of the second enzyme (methyltransferase II). Methyltransferase I has an apparent Km for S-adenosyl-L-methionine of 100.0 microM and a pH optimum of 8.0, while methyltransferase II has an apparent Km of 0.3 microM and a pH optimum of 6.0. Additional evidence to support the presence of two distinct enzymes includes the differential effects of ATP, Triton X-100, trypsin treatment, and temperature on their activities.  相似文献   

6.
《The Journal of cell biology》1993,123(6):1403-1419
Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p- chloromercuribenzenesulfonic acid, suggesting the existence of protein- mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non-endocytic, protein-mediated events.  相似文献   

7.
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.  相似文献   

8.
The spin-lattice 13C-NMR relaxation time T1 of carbons in egg yolk phosphatidylcholine (EYPC) unilamellar liposomes was measured at 15 MHz, 25 MHz and 75 MHz in the presence of diamagnetic La3+ and paramagnetic Gd3+ ions. Supposing formation of ML2 complexes (where M is the metal ion and L the lipid) and using a simplified Solomon-Bloembergen-Morgan equation, a value of less than r-3IS greater than 2 = 0.1880 +/- 0.0005 nm-6 was obtained for C omega carbon of lipid chains, where rIS is the distance of Gd3+ unpaired electron and C omega nucleus, and angle brackets denote a weighted average. This value may serve as the basis for testing the application of statistical mechanics to lipid chain conformation and chain terminal group distribution in lipid bilayers.  相似文献   

9.
In P(2)-type ATPases, a stalk region connects the cytoplasmic part of the molecule, which binds and hydrolyzes ATP, to the membrane-embedded part through which cations are pumped. The present study has used cysteine scanning mutagenesis to examine structure-function relationships within stalk segment 5 (S5) of the yeast plasma-membrane H(+)-ATPase. Of 29 Cys mutants that were made and examined, two (G670C and R682C) were blocked in biogenesis, presumably due to protein misfolding. In addition, one mutant (S681C) had very low ATPase activity, and another (F685C) displayed a 40-fold decrease in sensitivity to orthovanadate, reflecting a shift in equilibrium from the E(2) conformational state toward E(1). By far the most striking group of mutants (F666C, L671C, I674C, A677C, I684C, R687C, and Y689C) were constitutively activated even in the absence of glucose, with rates of ATP hydrolysis and kinetic properties normally seen only in glucose-metabolizing cells. Previous work has suggested that activation of the wild-type H(+)-ATPase results from kinase-mediated phosphorylation in the auto-inhibitory C-terminal region of the 100-kDa polypeptide. The seven residues identified in the present study are located on one face of the S5 alpha-helix, consistent with the idea that mutations along this face serve to release the auto-inhibition.  相似文献   

10.
11.
The partition coefficient Kp was measured for a headgroup-labeled phospholipid (12:0,12:0)-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-PE (12-NBD-PE), equilibrated between LUV of a series of phosphatidylcholines (PC). Fluorescence resonance energy transfer between the 12-NBD-PE and a headgroup-rhodamine-labeled PE was used to find the equilibrium concentration of the 12-NBD-PE in the different LUV. Reliable equilibrium concentrations were obtained by monitoring the approach to equilibrium starting from a concentration below and from a concentration above the ultimate values. Using (16:0,18:1delta9)-PC as the reference lipid, Kp ranged from a high value of 1.65 favoring (16:0,18:1delta9)-PC over (16:1delta9,16:1delta9)-PC, to a low value of 0.90, favoring (22:1delta13,22:1delta13)-PC over (16:0,18:1delta9)-PC. The Kp values enabled calculation of the acyl chain contribution to the excess free energy of mixing for (12:0,12:0) acyl chains at infinite dilution in the L alpha phase of PC having acyl chains of (16:0,18:1delta9), (16:1delta9,16:1delta9), (18:1delta9,18:1delta9), (18:1delta6,18:1delta6), (20:1delta11,20:1delta11), and (22:1delta13,22:1delta13). (14:1delta9,14:1delta9)-PC was found to transfer so rapidly between LUV as to preclude reliable Kp measurement.  相似文献   

12.
13.
14.
PMP1 is a small single-spanning membrane protein functioning as a regulatory subunit of the yeast plasma membrane H(+)-ATPase. This protein forms a unique helix and exhibits a positively charged cytoplasmic domain that is able to specifically segregate phosphatidylserines (PSs). A marked groove formed at the helix surface is thought to play a major role in the related lipid-protein interaction network. Mutational analysis and (1)H NMR experiments were therefore performed on a synthetic PMP1 fragment using DPC-d(38) micelles as a membrane-like environment, in the presence of small amounts of POPS. A mutation designed for altering the helix groove was shown to disfavor the POPS binding specificity as much as that affecting the electrostatic interaction network. From POPS titration experiments monitored by a full set of one- and two-dimensional NOESY spectra, the association between the phospholipids and the PMP1 peptide has been followed. Our data reveal that the clustering of POPS molecules is promoted from a stabilized framework obtained by coupling the PMP1 helix groove to a POPS sn-2 chain. To our knowledge, the NOE-based titration plots displayed in this report constitute the first NMR data that directly distinguish the role of the sn-1 and sn-2 acyl chains in a lipid-protein interaction. The results are discussed while taking into account our accurate knowledge of the yeast plasma membrane composition and its ability to form functional lipid rafts.  相似文献   

15.
Coluccio A  Malzone M  Neiman AM 《Genetics》2004,166(1):89-97
SEC9 and SPO20 encode SNARE proteins related to the mammalian SNAP-25 family. Sec9p associates with the SNAREs Sso1/2p and Snc1/2p to promote the fusion of vesicles with the plasma membrane. Spo20p functions with the same two partner SNAREs to mediate the fusion of vesicles with the prospore membrane during sporogenesis. A chimeric molecule, in which the helices of Sec9p that bind to Sso1/2p and Snc1/2p are replaced with the homologous regions of Spo20p, will not support vesicle fusion in vegetative cells. The phosphatidylinositol-4-phosphate-5-kinase MSS4 was isolated as a high-copy suppressor that permits this chimera to rescue the temperature-sensitive growth of a sec9-4 mutant. Suppression by MSS4 is specific to molecules that contain the Spo20p helical domains. This suppression requires an intact copy of SPO14, encoding phospholipase D. Overexpression of MSS4 leads to a recruitment of the Spo14 protein to the plasma membrane and this may be the basis for MSS4 action. Consistent with this, deletion of KES1, a gene that behaves as a negative regulator of SPO14, also promotes the function of SPO20 in vegetative cells. These results indicate that elevated levels of phosphatidic acid in the membrane may be required specifically for the function of SNARE complexes containing Spo20p.  相似文献   

16.
Optimal reaction conditions were established for hydrogenation of plasma membranes of living murine GRSL leukemia cells, using the water-soluble catalyst Pd(QS)2 (QS, sulphonated alizarine; C14H6O7NaS). Under these conditions more than 80% of the cells remained viable. Analysis by gas chromatography revealed that hydrogenation occurred predominantly in the 18:2, 20:4 and 22:6 fatty acyl chains of the membrane phospholipids. Under the same conditions hydrogenation was also performed in purified plasma membranes from GRSL cells and from rat liver, and in liposomes prepared from the total lipid extracts of these membranes. Hydrogenation increased the lipid structural order parameter in the membranes, as measured by fluorescence polarization. This increase was more pronounced in the liposomes (46%) than in the plasma membranes (17-25%). Hydrogenation increased the expression of a 15 kDa antigen on the surface of viable GRSL cells, as measured in a Fluorescence Activated Cell Sorter, using monoclonal antibodies. The expression of four other antigens, among which H-2k, was not or much less affected by this treatment.  相似文献   

17.
In this work, binary mixtures of phospholipid/ergosterol (erg) were studied using three fluorescent membrane probes. The phospholipid was either saturated (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) or monounsaturated (1-palmitoyl-2-dioleoyl-sn-glycero-3-phosphocholine, POPC) phosphatidylcholine, to evaluate the fluorescence properties of the probes in gel, liquid ordered (l(o)) and liquid disordered (l(d)) phases. The probes have been used previously to study cholesterol-enriched domains, but their photophysical properties in erg-enriched membranes have not been characterized. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-DPPE) presents modest blue-shifts upon erg addition, and the changes in the fluorescence lifetime are mainly due to differences in the efficiency of its fluorescence dynamic self-quenching. However, the steady-state fluorescence anisotropy of NBD-DPPE presents well-defined values in each lipid phase. N-(lissamine rhodamine B sulfonyl)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Rhod-DOPE) presents a close to random distribution in erg-rich membranes. There are no appreciable spectral shifts and the steady-state fluorescence anisotropy presents complex behavior, as a result of different photophysical processes. The probe is mostly useful to label l(d) domains in yeast membranes. 4-(2-(6-(Dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium (di-4-ANEPPS) is an electrochromic dye with excitation spectra largely insensitive to the presence of erg, but presenting a strong blue-shift of its emission with increasing concentrations of this sterol. Its partition coefficient is favorable to l(o) domains in POPC/erg mixtures. Although the fluorescence properties of di-4-ANEPPS are less sensitive to erg than to chol, in both cases the fluorescence lifetime responds monotonically to sterol mole fraction, becoming significantly longer in the presence of sterol as compared to pure POPC or DPPC bilayers. The probe displays a unique sensitivity to sterol-lipid interaction due to the influence of hydration and H-bonding patterns at the membrane/water interface on its fluorescence properties. This makes di-4-ANEPPS (and possibly similar probes) potentially useful in the study of erg-enriched domains in more complex lipid mixtures and in the membranes of living yeast cells.  相似文献   

18.
Recent studies have highlighted the importance of monolayer and bilayer curvature for the budding and fission of biological membranes. Other lines of research, addressing the structure of planar biological membranes, have revealed the existence of cholesterol-based membrane microdomains. Here, we comment on the significance of microdomains for curved membranes, with special emphasis on budding and fission.  相似文献   

19.
The membrane of vesicular stomatitis virus (VSV) contains two distinct pools of phosphatidylethanolamine molecules which reside in the inner and outer phospholipid monolayers, respectively. 36% of the total membrane phosphatidylethanolamine is found in the outer monolayer while 64% is found in the inner. The two pools of VSV phosphatidylethanolamine can be distinguished operationally by the fact that only outer phosphatidylethanolamine is reactive in intact virions with the membrane-impermeable reagent trinitrobenzenesulfonate (TNBS). We have made use of this property to separate inner from outer VSV phosphatidylethanolamine and to determine the fatty acyl chain compositions of the two phosphatidylethanolamine pools separately. The results show that compared to outer phosphatidylethanolamine, inner phosphatidylethanolamine molecules contain a significantly higher proportion of unsaturated fatty acyl chains. Furthermore, whereas the proportion of unsaturated fatty acyl chains was found to be quite similar at the 1 and 2 glycerol carbon atoms in inner phosphatidylethanolamine, a marked dissimilarity was observed in outer phosphatidylethanolamine; outer phosphatidylethanolamine was enriched in saturated fatty acyl chains at the 1 position and in unsaturated fatty acyl chains at the 2 position. The differential fatty acyl chain composition of inner compared to outer phosphatidylethanolamine indicates that rapid, random transmembrane migration (flip-flop) of phosphatidylethanolamine does not occur in the VSV membrane. The nature of the fatty acyl chain asymmetry observed in VSV phosphatidylethanolamine does not support the view that the  相似文献   

20.
Lipase-catalyzed acidolysis was examined for the production of structured phospholipids in a hexane system. In a practical operation of the reaction system, the formation of lyso-phospholipids from hydrolysis is often a serious problem, as demonstrated from previous studies. A clear elucidation of the issue and optimization of the system are essential for the practical applications in reality. The effects of enzyme dosage, reaction temperature, solvent amount, reaction time, and substrate ratio were optimized in terms of the acyl incorporation, which led to the products, and lyso-phospholipids formed by hydrolysis, which led to the low yields. The biocatalyst used was the commercial immobilized lipase Lipozyme TL IM and substrates used were phosphatidylcholine (PC) from soybean and caprylic acid. A response surface design was used to evaluate the influence of selected parameters and their relationships on the incorporation of caprylic acid and the corresponding recovery of PC. Incorporation of fatty acids increased with increasing enzyme dosage, reaction temperature, solvent amount, reaction time, and substrate ratio. Enzyme dosage had the most significant effect on the incorporation, followed by reaction time, reaction temperature, solvent amount, and substrate ratio. However the parameters had also a negative influence on the PC recovery. Solvent amount had the most negative effect on recovery, followed by enzyme dosage, temperature, and reaction time. Individually substrate ratio had no significant effect on the PC recovery. Interactions were observed between different parameters. On the basis of the models, the reaction was optimized for the maximum incorporation and maximum PC recovery. With all of the considerations, the optimal conditions are recommended as enzyme dosage 29%, reaction time 50 h, temperature 54 degrees C, substrate ratio 15 mol/mol caprylic acid/PC, and 5 mL of hexane per 3 g substrate. No additional water is necessary. Under these conditions, an incorporation of caprylic acid up to 46% and recovery of PC up to 60% can be obtained from the prediction. The prediction was confirmed from the verification experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号