首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Short retroposons can be used as natural phylogenetic markers. By means of hybridization and PCR analysis, we demonstrate that B2 retroposon copies are present only in the three rodent families: Muridae, Cricetidae, and Spalacidae. This observation highlights the close phylogenetic relation between these families. Two novel B2-related retroposon families, named DIP and MEN elements, are described. DIP elements are found only in the genomes of jerboas (family Dipodidae) and birch mice (family Zapodidae), demonstrating the close relationship between these rodents. MEN element copies were isolated from the squirrel, Menetes berdmorei, but were not detected in three other species from the family Sciuridae. The MEN element has an unusual dimeric structure: the left and right monomers are B2- and B1-related sequences, respectively. Comparison of the B2, DIP, MEN, and 4.5S1 RNA elements revealed an 80-bp core sequence located at the beginning of the B2 superfamily retroposons. This observation suggests that these retroposon families descended from a common progenitor. A likely candidate for this direct progenitor could be the ID retroposon. Received: 20 December 1996 / Accepted: 17 June 1997  相似文献   

4.
Here we describe a new short retroposon family of rodents. Like the primate Alu element consisting of two similar monomers, it is dimeric, but the left and right monomers are different and descend from B1 and ID short retroposons, respectively. Such elements (B1-dID) were found in the genomes of Gliridae, Sciuridae, Castoridae, Caviidae, and Hystricidae. Nucleotide sequences of this retroposon can be assigned to several structural variants. Phylogenetic analysis of B1-dID and related sequences suggests a possible scenario of B1-dID evolution in the context of rodent evolution. Received: 30 August 1999 / Accepted: 20 March 2000  相似文献   

5.
The retroposon sequences, their mechanisms of transposition and the occurrence of insertional mutation in the mammalian genome are reviewed. Insertional mutations fall into two broad categories: those due to the disruption of a gene following the physical integration of a foreign DNA sequence result in loss of gene product and would be expected to be associated with a recessive mutation. A second class of insertional mutation is well documented in which upon integration the promoter/enhancer activities inherent in the retroposon genome exert their influence on neighboring genes. This promoter/enhancer activity of integrated retroposons may have effects over relatively long distances and thus limit the possibilities of establishing an association between retroposon integration and mutation. It is emphasized that a systematic search for insertional mutations in the mammalian genome involves an extensive two-dimensional array of possible retroposon sequences and mutant alleles. Present results represent only a small portion of the total array. Future studies promise to be fruitful in efforts to isolate genes through insertional tagging, to characterize the mechanisms of retroposon transposition, as well as to study the stability of the mammalian genome.  相似文献   

6.
7.
Although recent mammalian genome projects have uncovered a large part of genomic component of various groups, several repetitive sequences still remain to be characterized and classified for particular groups. The short interspersed repetitive elements (SINEs) distributed among marsupial genomes are one example. We have identified and characterized two new SINEs from marsupial genomes that belong to the CORE-SINE family, characterized by a highly conserved "CORE" domain. PCR and genomic dot blot analyses revealed that the distribution of each SINE shows distinct patterns among the marsupial genomes, implying different timing of their retroposition during the evolution of marsupials. The members of Mar3 (Marsupialia 3) SINE are distributed throughout the genomes of all marsupials, whereas the Mac1 (Macropodoidea 1) SINE is distributed specifically in the genomes of kangaroos. Sequence alignment of the Mar3 SINEs revealed that they can be further divided into four subgroups, each of which has diagnostic nucleotides. The insertion patterns of each SINE at particular genomic loci, together with the distribution patterns of each SINE, suggest that the Mar3 SINEs have intensively amplified after the radiation of diprotodontians, whereas the Mac1 SINE has amplified only slightly after the divergence of hypsiprimnodons from other macropods. By compiling the information of CORE-SINEs characterized to date, we propose a comprehensive picture of how SINE evolution occurred in the genomes of marsupials.  相似文献   

8.
9.
Bov-A2 is a retroposon that is widely distributed among the genomes of ruminants (e.g., cow, deer, giraffe, pronghorn, musk deer, and chevrotain). This retroposon is composed of two monomers, called Bov-A units, which are joined by a linker sequence. The structure and origin of Bov-A2 has been well characterized but a genome-level exploration of this retroposon has not been implemented. In this study we performed an extensive search for Bov-A2 using all available genome sequence data on Bos taurus. We found unique Bov-A2-derived sequences that were longer than Bov-A2 due to amplification of three to six Bov-A units arranged in tandem. Detailed analysis of these elongated Bov-A2-derived sequences revealed that they originated through unequal crossing-over of Bov-A2. We found a large number of these elongated Bov-A2-derived sequences in cattle genomes, indicating that unequal crossing-over of Bov-A2 occurred very frequently. We found that this type of elongation is not observed in wild bovine and is therefore specific to the domesticated cattle genome. Furthermore, at specific loci, the number of Bov-A units was also polymorphic between alleles, implying that the elongation of Bov-A units might have occurred very recently. For these reasons, we speculate that genomic instability in bovine genomes can lead to extensive unequal crossing-over of Bov-A2 and levels of polymorphism might be generated in part by repeated outbreeding.  相似文献   

10.
The detection of horizontal transfer is important to understanding the origin and spread of transposable elements and in assessing their impact on genetic diversity. The occurrence of the phenomenon is not in doubt for two of the three major groups of elements, but is disputed for retroposons, largely on the grounds of data paucity and overreliance on divergence estimates between host species. We present here the most wide-ranging retroposon data set assembled to date for a species group, the mosquitoes. The results provide no evidence for horizontal transfer events and show conclusively that four previously reported events, involving Juan-A, Juan-C, T1, and Q, did not occur. We propose that the origin of all known mosquito retroposons can be attributed to vertical inheritance and that retroposons have therefore been a persistent source of genetic diversity in mosquito genomes since the emergence of the taxon. Furthermore, the data confirm that the unprecedented levels of retroposon diversity previously reported in Anopheles gambiae extends to at least seven other species representing five genera and all three mosquito subfamilies. Most notably, this included the L1 elements, which are not known in other insects. A number of novel well-defined monophyletic groups were also identified, particularly, JM2 and JM3 within the Jockey clade, which included sequences from seven and five mosquito species, respectively. As JM3 does not contain an Anopheles element, this represents a good example of stochastic loss and the best out of at least four found in this study. This exceptionally diverse data set when compared with the wealth of data available for the many unrelated species with which mosquitoes have intimate contact through blood feeding ought to be fertile ground for the discovery of horizontal transfer events. The absence of positive results therefore supports the view that retroposon horizontal transfer does not occur or is far more exceptional than for other types of transposable elements.  相似文献   

11.
Mobile elements are most abundant in the mammalian genome, comprising at least 40-50% of the DNA. They are differentiated into two most prominent families: the LINE elements, which are preferentially located in the G-bands, and SINES, which are clustered in the R-bands. We report here a novel mammalian non-L1-retroposon, which invaded the genome of Microtus agrestis in a very short time from an evolutionary viewpoint. No relevant sequence homology could be demonstrated to known sequences in the NCBI database. However, cross-hybridizing sequences exist in the genomes of all other Microtus species analyzed, but not in Mus musculus, indicating the recent evolutionary origin of this element. This retroposon is enriched in the entire heterochromatin of the X and Y chromosomes, but is also interspersed in autosomal locations in euchromatic portions of the genome. We show that the retroposon is heavily transcribed from the heterochromatin during female meiosis prerequisite for the subsequent retrotransposition. The estimated rate of retrotransposition is at least 1-2 x 10(-2) per generation, which is hundred-fold higher than that of the majority of invertebrate retroposons and also higher than the transposition rate of a murine L1 element, which was calculated to be 3 x 10(-3) per generation.  相似文献   

12.
D Wells  W Bains 《DNA sequence》1991,2(2):125-127
The analysis of a genomic loci containing human histone H3.3 processed pseudogenes, has revealed two regions that are unusually rich in other retroposons. At one of the loci the H3.3 pseudogene is itself interrupted by 2 Alu repetitive sequences. The characterization of these two recently transposed Alus provides confirmation of the "multiple origin" hypothesis of these repetitive elements. The unusual occurrence of 3 different types of retroposons in a small region suggests that there may be particular chromosomal regions that are hot spots for retroposon insertion.  相似文献   

13.
The rDNA locus of insects and other arthropods contains non-LTR retrotransposons (retroposons) that are specifically inserted into 28S rRNA genes. The most frequent retroposons are R1 and R2, but the mechanism of insertion and the functions of these mobile elements have not been studied in detail. A clone containing a full-length R1 retroposon copy was isolated from the cosmid library of Blattella germanica genes and sequenced. The amino acid sequences encoded by ORF1 of the R1 retroposon were subjected to bioinformatic analysis. It was found that ORF1 of this mobile element encodes a protein (ORF1p) belonging to the superfamily of zinc finger (CCHC) retroviral nucleocapsid proteins and contains two conserved RRM domains (RNA-recognizing motifs) identified on the basis of analysis of the secondary structure of this protein. The discovery of RRM domains in ORF1p of R1 retroposons can contribute to the understanding of the mechanisms of their retrotransposition. We revealed a coiled-coil motif in the N-terminal region of R1 ORF1p, which is similar to the coiled-coil domain involved in homo- or heteromultimerization of proteins and in protein-protein interactions. The domain organization of homologous Gag-like proteins of retroposons in some insects and fungi was found to be similar to the structure established for R1 ORF1p of B. germanica.  相似文献   

14.
The SINE-R retroposon family was derived from the long terminal repeats (LTRs) of human endogenous retrovirus K (HERV-K) that had been active during the hominoid evolution. The retroposons and HERV-K LTR elements have potential relevance to structural change and genetic variation of the hominoid genome. In our previous study, we found that the SINE-R retroposons were hominoid specific. Here we identified seventeen new SINE-R retroposons (14 from orangutan and 3 from gibbon) from Asian apes and phylogenetically analysed them in comparison with those of the humans and African great apes. None of the retroposons from Asian apes were closely related to SINE-R.C2 that is human specific, and originally identified in the gene for the C2 component of complement, whereas some retroposons (Ch-M10, Ch-M16, Gor-M, Gor-F1, Gor-M6, and Gor-F9) from African great apes showed very close relationship with that of the SINE-R.C2 retroposon. The phylogenetic tree based on the SINE-R retroposons revealed wide overlap of the retroposons across species, suggesting that the SINE-R retroposons have been evolved parallel pattern in the course of hominoid evolution.  相似文献   

15.
The rDNA locus of insects and other arthropods contains non-LTR retrotransposons (retroposons) that are specifically inserted into 28S rRNA genes. The most frequent retroposons are R1 and R2, but the mechanism of insertion and the functions of these mobile elements have not been studied in detail. A clone containing a full-length R1 retroposon copy was islated from the cosmid library of Blattella germanica genes and sequenced. The amino acid sequences encoded by ORF1 of the R1 retroposon were subjected to bioinformatic analysis. It was found that ORF1 of this mobile element encodes a protein (ORF1p) belonging to the superfamily of zinc finger (CCHC) retroviral nucleocapsid proteins and contains two conserved RRM domains (RNA-recognizing motifs) identified on the basis of analysis of the secondary structure of this protein. The discovery of RRM domains in ORF1p of R1 retroposons can contribute to the understanding of the mechanisms of their retrotransposition. We revealed a coiled-coil motif in the N-terminal region of R1 ORF1p, which is similar to the coiled-coil domain involved in homo- or heteromultimerization of proteins and in protein-protein interactions. The domain organization of homologous Gag-like proteins of retroposons in some insects and fungi was found to be similar to the structure established by us for R1 ORF1p of B. germanica.  相似文献   

16.
In the genome of Artiodactyla (cow, sheep, pigs, camels, and whales), a major retroposon group originated from a presumable horizontal transfer of BovB, a retrotransposon-like element retroposon, between 52 and 70 million years ago. Since then, BovB retroposons have proliferated and today occupy a quarter of the cow's genome sequence. The BovB-related short interspersed elements (SINEs) were used for resolving the phylogeny of Bovinae (cows, spiral-horned antelopes, and nilgais) and their relatives. In silico screening of 55,000 intronic retroposon insertions in the cow genome and experimental validation of 126 introns resulted in 29 informative retroposon markers for resolving bovine evolutionary relationships. A transposition-in-transposition analysis identifies three different phases of SINE activity and show how BovB elements have expanded in the cattle genome.  相似文献   

17.
Polyploidy is a prominent process in plant evolution and adaptation, but molecular phylogenetic studies of polyploids based on DNA sequences have often been confounded by their complex gene and genome histories. We report here a retroposon insertion in the nuclear gene granule-bound starch synthase I (GBSSI or "waxy") that clearly reveals the ancient hybrid history of the medically important polyploid species belladonna (Atropa belladonna) and resolves the controversy over the taxonomic group to which it belongs, the tribe Hyoscyameae (Solanaceae). Our inferences based on the pattern of presence or absence of the retroposon insertion are corroborated by phylogenetic analyses of the GBSSI gene sequences. This case may suggest that retroposons are promising molecular markers to study polyploid evolution.  相似文献   

18.

Background  

DNA sequences afford access to the evolutionary pathways of life. Particularly mobile elements that constantly co-evolve in genomes encrypt recent and ancient information of their host's history. In mammals there is an extraordinarily abundant activity of mobile elements that occurs in a dynamic succession of active families, subfamilies, types, and subtypes of retroposed elements. The high frequency of retroposons in mammals implies that, by chance, such elements also insert into each other. While inactive elements are no longer able to retropose, active elements retropose by chance into other active and inactive elements. Thousands of such directional, element-in-element insertions are found in present-day genomes. To help analyze these events, we developed a computational algorithm (Transpositions in Transpositions, or TinT) that examines the different frequencies of nested transpositions and reconstructs the chronological order of retroposon activities.  相似文献   

19.

Background

Mosquitoes are the transmissive vectors for several infectious pathogens that affect man. However, the control of mosquitoes through insecticide and pesticide spraying has proved difficult in the past. We hypothesized that, by virtue of their reported vertical inheritance among mosquitoes, group II introns – a class of small coding ribonucleic acids (scRNAs) – may form a potential species-specific biomarker. Structurally, introns are a six-moiety complex. Depending on the function of the protein encoded within the IV moiety, the highly mobile class of group II introns or retroposons is sub-divided into two: Restriction Endonuclease (REase)-like and Apurinic aPyramydinic Endonuclease (APE)-like. REase-like retroposons are thought to be the ancestors of APE retroposons. Our aim in this study was to find evidence for the highly species-specific conservation of the APE subclass of mosquito retroposons.

Methods and Results

In silico targeted sequence alignments were conducted across a 1,779-organism genome database (1,518 bacterial, 59 archeal, 201 eukaryotic, and the human), using three mosquito retroposon sequence tags (RST) as BLASTN queries [AJ970181 and AJ90201 of Culex pipien origin and AJ970301 of Anoplese sinensis origin]. At a calibration of E = 10, A & D = 100, default filtration and a homology cut-off of >95% identity, no hits were found on any of the 1,518 bacterial genomes. Eleven (100%) and 15 (100%) hits obtained on the 201-eukaryote genome database were homologs (>95% score) of C.pipien quinquefasciatus JHB retroposons, but none of An. sinensis. Twenty and 221 low score (30–43% identity) spurious hits were found at flanking ends of genes and contigs in the human genome with the C.pipien and An. sinensis RSTs respectively. Functional and positional inference revealed these to be possible relatives of human genomic spliceosomes. We advance two models for the application of mosquito RST: as precursors for developing molecular biomarkers for mosquitoes, and as RST-specific monoclonal antibody (MAb)-DDT immunoconjugates to enhance targeted toxicity.

Conclusion

We offer evidence to support the species-specific conservation of mosquito retroposons among lower taxa. Our findings suggest that retroposons may therefore constitute a unique biomarker for mosquito species that may be exploited in molecular entomology. Mosquito RST-specific MAbs may possibly permit synthesis of DDT immunoconjugates that could be used to achieve species-tailored toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号