首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new functionalized pyrrole monomer, 3-pyrrolylacrylic acid (PAA) was synthesized. It was used to prepare a copolymer with pyrrole, poly(Py-co-PAA), which was investigated by reflective FT-IR, UV-vis spectroscopy and cyclic voltammetry. A label-free DNA sensor was prepared based on a poly(Py-co-PAA) film. Hybridization with complementary and non-complementary DNA targets was studied by electrochemical impedance spectroscopy. Results show a significant increase in the charge-transfer resistance upon addition of complementary target. The impedance spectra were analyzed by using a modified Randles and Ershler equivalent circuit model. The change in charge-transfer resistance that was used as an index of sensor response was found to be linear with logarithmic target concentration in the range of 2 x 10(-9) to 2 x 10(-7)M. The detection limit was 0.98 nM.  相似文献   

2.
A colorimetric sensor array based on natural pigments was developed to discriminate between various saccharides. Anthocyanins, pH‐sensitive natural pigments, were extracted from fruits and flowers and used as components of the sensor array. Variation in pH, due to the reaction between saccharides and boronic acids, caused obvious colour changes in the natural pigments. Only by observing the difference map with the naked eye could 11 common saccharides be divided into independent individuals. In conjunction with pattern recognition, the sensor array clearly differentiated between sugar and sugar alcohol with highly accuracy and allowed rapid quantification of different concentrations of maltitol and fructose. This sensor array for saccharides is expected to become a promising alternative tool for food monitoring. The link between anthocyanin and saccharide detection opened a new guiding direction for the application of anthocyanins in foods.  相似文献   

3.
We design a new saccharides sensor based on the ensemble of compound 2 with a boronic group and compound 3 with two phenolic -OH groups, taking advantage of the fluorescence quenching ability of nitronyl nitroxides and reversible boronate formation between boronic acid and diol. The results show that the fluorescence of compound 2 was largely quenched upon addition of compound 3 due to the formation of the intermediate nitronyl nitroxide-anthracene dyad 1. Sequential addition of saccharides such as fructose to the ensemble of compounds 2 and 3 together with dyad 1 induced the fluorescence enhancement. These results clearly demonstrate the possibility to employ the ensemble of compounds 2 and 3 (with dyad 1) to sense saccharides.  相似文献   

4.
In this study, nucleotide adsorption-desorption behaviour of boronic acid-carrying uniform, porous particles was investigated. The particles were produced by a "multi-step microsuspension polymerization" in the form of poly(styrene-vinylphenyl boronic acid-divinylbenzene) terpolymer. In the first step of the production method, uniform polystyrene latex particles (6.2 microm in size) were obtained by dispersion polymerization. These particles were first swollen by a low molecular mass organic agent (i.e. dibutylphthalate, DBP) and then by a monomer mixture including styrene (S), 4-vinylphenyl boronic acid (VPBA) and divinylbenzene (DVB). The particle uniformity was protected in both swelling stages by adjusting DBP/polystyrene latex and monomer mixture/polystyrene latex ratios. Polymerization of the monomer mixture in the swollen seed particles provided boronic acid-carrying uniform, porous particles 11-12 microm in size. To have uniform particles with different porosities and boronic acid contents, the feed concentration of boronic acid-carrying monomer and the monomer/seed latex ratio were changed. The particles were tried as sorbent for the adsorption of a model nucleotide (i.e., beta-nicotinamide adenine dinucleotide, beta-NAD). In the beta-NAD adsorption experiments, the maximum equilibrium adsorption was obtained at pH 8.5 which was very close to pKa of boronic acid. The incorporation of boronic acid functionality provided a significant increase in the beta-NAD adsorption. In contrast to plain poly(styrene-co-divinylbenzene) particles, four-fold higher beta-NAD adsorption was obtained with the boronic acid functionalized particles. Beta-NAD was desorbed from the particles with the yields higher than 90% by weight.  相似文献   

5.
A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination.  相似文献   

6.
A novel saccharide host containing four boronic acid recognition units on a single DNA duplex terminus was constructed. This construct allowed boronic acid sugar recognition in the context of double-stranded DNA to be established while highlighting the benefits of multivalency. Following the solid-phase synthesis of a bis-boronic acid tag, two end-functionalized oligonucleotides with complementary sequences were functionalized through amide ligation. By annealing the boronic acid-DNA conjugates, a tetra-boronic acid DNA duplex was assembled. The saccharide binding ability of this tetra-boronic acid host was revealed through cellulose paper chromatography in the absence and presence of various saccharides. While no appreciable saccharide binding was seen in the case of a bis-boronic DNA conjugate, the increased migration of the tetra-boronic acid host relative to the control sequences in the presence of selected monosaccharides underscored the importance of multivalent effects. We thus identified a requirement for multiple recognition sites in these conjugate systems and expect the results to facilitate future efforts toward applying synthetic recognition systems to the realm of macromolecules.  相似文献   

7.
We report investigations on the thermally regulated uptake and release of the chemotherapeutic drug doxorubicin from microgel thin films. A spin coating, layer-by-layer (scLbL) assembly approach was used to prepare thin films composed of thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-AAc) microgels by alternatively exposing a 3-aminopropyltrimethoxysilane (APTMS) functionalized glass substrate to polyanionic pNIPAm-AAc microgels and polycationic poly(allylamine hydrochloride) (PAH). Using this method, 10, 20, and 30 microgel layer films were constructed with uniform layer buildup, as confirmed by quartz crystal microgravimetry (QCM). The films were subsequently loaded with doxorubicin by cycling the temperature of the film in an aqueous doxorubicin solution between 25 and 50 degrees C. Release characteristics were then examined using UV-vis spectroscopy, which revealed temperature-dependent release properties.  相似文献   

8.
Substrate-based tetrapeptide inhibitors with various warheads were designed, synthesized, and evaluated against the Dengue virus NS3 protease. Effective inhibition was achieved by peptide inhibitors with electrophilic warheads such as aldehyde, trifluoromethyl ketone, and boronic acid. A boronic acid has the highest affinity, exhibiting a K(i) of 43 nM.  相似文献   

9.
We describe a facile method to amine functionalize and subsequently fluorescently label polymethacrylamides synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT-generated poly(N-(2-hydroxypropyl) methacrylamide-b-N-[3-(dimethylamino)propyl] methacrylamide) (poly(HPMA-b-DMAPMA)), a water soluble biocompatible polymer, is first converted to a polymeric thiol and functionalized with a primary amine through a disulfide exchange reaction with cystamine and subsequently reacted with the amine-functionalized fluorescent dye, 6-(fluorescein-5-carboxamido)hexanoic acid, succinimidyl ester (5-SFX). Poly(HPMA258-b-DMAPMA13) (Mn = 39 700 g/mol, Mw/Mn = 1.06), previously synthesized by RAFT polymerization, was used to demonstrate this facile labeling method. The problem with labeling the omega-terminal chain end of a RAFT-synthesized polymethacrylamide is that the reduced end yields a tertiary thiol with low reactivity. The key to labeling poly(HPMA-b-DMAPMA) is to first reduce the dithioester chain end with a strong reducing agent such as NaBH4, and then functionalize the tertiary polymeric thiol with a primary amine through a disulfide exchange reaction with dihydrochloride cystamine. We show that the disulfide exchange reaction is efficient and that the amine-functionalized poly(HPMA-b-DMAPMA) can be easily labeled with the fluorescent dye, 5-SFX. This concept is proven by using a ninhydrin assay to detect primary amines and UV-vis spectroscopy to measure the degree of conjugation.  相似文献   

10.
A composite film of polyaniline (PAN) nano-networks/p-aminobenzene sulfonic acid (ABSA) modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electro-catalytic oxidation of uric acid (UA) and ascorbic acid (AA). The ABSA monolayer at GCE surface has been characterized by X-ray photo-electron spectroscopy (XPS) and electrochemical techniques. Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV-visible absorption spectra (UV-vis) and cyclic voltammetry (CV) have been used to investigate the PAN-ABSA composite film, which demonstrates the formation of the composite film and the maintenance of the electroactivity of PAN in neutral and even in alkaline media. Due to its different catalytic effects towards the electro-oxidation of UA and AA, the modified GCE can resolve the overlapped voltammetric response of UA and AA into two well-defined voltammetric peaks with both CV and differential pulse voltammetry (DPV), which can be used for the selective and simultaneous determination of these species in a mixture. The catalytic peak currents are linearly dependent on the concentrations of UA and AA in the range of 50-250 and 35-175mumoll(-1) with correlation coefficients of 0.997 and 0.998, respectively. The detection limits for UA and AA are 12 and 7.5mumoll(-1), respectively. Besides the good stability and reproducibility of PAN-ABSA/GCE due to the covalent attachment of ABSA at GCE surface, the modified electrode also exhibits good sensitivity and selectivity.  相似文献   

11.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

12.
L Luo  J Liu  Z Wang  X Yang  S Dong  E Wang 《Biophysical chemistry》2001,94(1-2):11-22
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyldimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD).  相似文献   

13.
Guo W  Hu N 《Biophysical chemistry》2007,129(2-3):163-171
Myoglobin (Mb), with net positive surface charges at pH 5.0, was successfully assembled into layer-by-layer films on various solid surfaces with poly(methacrylic acid) (PMAA) at different pH, designated as {PMAA(pH 5.0)/Mb}n, {PMAA(pH 6.5)/Mb}n, and {PMAA(pH 8.0)/Mb}n, respectively. As a weak polycarboxylic acid with pKa=6 - 7, PMAA carried different negative charges at different pH due to different ionization degree of its carboxylic acid groups. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the assembly of {PMAA/Mb}n films. All the results showed that the adsorption amount of Mb in each bilayer had an "unexpected" sequence of {PMAA(pH 5.0)/Mb}n>{PMAA(pH 6.5)/Mb}n>{PMAA(pH 8.0)/Mb}n, which could be explained by the formation of soluble complex of PMAA-Mb at pH 8.0 and the cooperative effect of hydrogen bonding and induced electrostatic interaction between Mb and PMAA at pH 5.0. The influence of ionic strength in exposure solution and in Mb adsorbate solution was investigated, and the results supported the above explanations. The {PMAA/Mb}n films provided a suitable microenvironment for Mb to retain its near-native structure and transfer electron with underlying electrodes. The reversible CV peak pair for Mb Fe(III)/Fe(II) redox couple could be used to catalyze reduction of hydrogen peroxide electrochemically, showing the potential applicability of the films as the new type of biosensors or bioreactors based on the direct electrochemistry of Mb. The electrochemical and electrocatalytic behaviors of protein layer-by-layer films with weak polyelectrolytes could thus be controlled by adjusting the solution pH of weak polyelectrolytes.  相似文献   

14.
A novel core-shell composite of gold nanoparticles (AuNPs) and SiO(2) molecularly imprinted polymers (AuNPs@SiO(2)-MIPs) was synthesized through sol-gel technique and applied as a molecular recognition element to construct an electrochemical sensor for determination of dopamine (DA). Compared with previous imprinting recognition, the main advantages of this strategy lie in the introduction and combination of AuNPs and biocompatible porous sol-gel material (SiO(2)). The template molecules (DA) were firstly adsorbed at the AuNPs surface due to their excellent affinity, and subsequently they were further assembled onto the polymer membrane through hydrogen bonds and π-π interactions formed between template molecules and silane monomers. Cyclic voltammetry (CV) was carried out to extract DA molecules from the imprinted membrane, and as a result, DA could be rapidly and effectively removed. The AuNPs@SiO(2)-MIPs was characterized by ultraviolet visible (UV-vis) absorbance spectroscopy, transmission electron microscope (TEM) and Fourier transform infrared spectrometer (FT-IR). The prepared AuNPs@SiO(2)-MIPs sensor exhibited not only high selectivity toward DA in comparison to other interferents, but also a wide linear range over DA concentration from 4.8×10(-8) to 5.0×10(-5)M with a detection limit of 2.0×10(-8)M (S/N=3). Moreover, the new electrochemical sensor was successfully applied to the DA detection in dopamine hydrochloride injection and human urine sample, which proved that it was a versatile sensing tool for the selective detection of DA in real samples.  相似文献   

15.
A novel nanoscale zero-valent iron-Sargassum swartzii (nZVI-SS) biocomposite was synthesized and evaluated for its ability to adsorb crystal violet (CV) from aqueous solutions. Involvement of various functional groups of the biosorbent in preferential adsorption of cationic dye was observed using Fourier transform infrared (FTIR) spectroscopy. Morphological changes occurring on the biocomposite materials were characterized using scanning electron microscopy (SEM). Significant increase (~90%) in the biosorption of cationic dye was observed with gradual increase in pH of the medium from 3 to 12. The effect of biosorbent concentration, initial pH, temperature, agitation rate, adsorption time, and initial dye concentration was studied for the biosorption of CV using nZVI biocomposite. During the optimization study, maximum biosorption capacity was observed at pH of 8. At various initial CV concentrations (20–100 mg/L), attainment of batch sorption equilibrium was observed within 120 min of reaction time. The Langmuir isotherm model expressed high coefficient of determination (R2 = 0.999). The maximum dye uptake of 200 mg/g was reported at pH 8. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Investigations proved that nZVI-SS is an excellent biosorbent for the sequestration of CV in aqueous media.  相似文献   

16.
New ditopic sensory elements 2 and 3 for catecholamines based on a hexahomotrioxacalix[3]arene, with a boronic acid substituent appended, were designed and synthesized. As an interesting mode of molecular recognition at membrane surfaces, the host, when incorporated into poly(vinyl chloride) (PVC) liquid membranes, displayed excellent potentiometric selectivity for dopamine over other catecholamines (noradrenaline and adrenaline) and inorganic cations (Na+, K+, and NH4+).  相似文献   

17.
An efficient method was developed for the preparation of polyanionic affinity agent (3), a key component in the measurement of glycated hemoglobin (GHb). Glycated hemoglobin is an important clinical marker for diagnosis of patients with diabetes and useful to monitor the management of disease. The affinity agent (3) was prepared based on coupling reaction between poly(acrylic acid) (1) and 3-aminophenylboronic acid (2) in water. The critical features of this polymeric affinity agent (3), such as size, boronic acid incorporation ratio and concentration, on the measurement of glycated hemoglobin were evaluated. It was found that the agent (3) prepared using poly(acrylic acid) (1) with 225 kDa molecular weight gave optimal GHb measurement. The performance test results demonstrated that the boronic acid incorporation ratio and concentration of affinity agent (3) play a critical role in the assay and determines the precision of glycated hemoglobin measurement.  相似文献   

18.
In this paper, water soluble poly(diallyldimethylammonium chloride)-graphene nanosheets (PDDA-GNs) were synthesized and characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). On the basis of PDDA-GNs, three different types of gold nanoparticles/graphene nanosheets (AuNPs/GNs) hybrid nanocomposites were obtained by one-pot synthesis, in situ reduction and adsorption methods, respectively. These nanocomposites were used as electrode materials for electrochemical determination of uric acid (UA). The results indicated adsorption to be the best method to synthesize hybrid nanocomposites from the electrochemical point of view. Given the fact positively charged PDDA-AuNPs could interact with negatively charged UA molecules, we then synthesized PDDA-protected gold nanoparticles/graphene nanosheets (PDDA-AuNPs/GNs) hybrid nanocomposites by adsorption method, for the first time. As were expected, PDDA-AuNPs/GNs gave better performance for UA than AuNPs/GNs obtained by adsorption, and the anodic peak current of UA obtained by cyclic voltammetry (CV) increased 102.1-fold in comparison to bare GCE under optimizing conditions. Differential pulse voltammetry (DPV) was used to quantitatively determine UA. The linear range of UA was from 0.5μM to 20μM and the detection limit was 0.1μM (S/N=3) with a high sensitivity of 103.08μAμM(-1)cm(-2). The assay results of urine sample provided satisfying recoveries by standard addition method. In addition, the anodic peaks of adrenaline (AD) and UA were well resolved at PDDA-AuNPs/GNs modified electrode, while they were too overlapped to separate at bare electrode, as a result of that UA was successfully detected in the presence of AD. In conclusion, rapid synthesis of PDDA-AuNPs/GNs were realized and applied as an advanced hybrid electrode material for UA determination.  相似文献   

19.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   

20.
Zhu Y  Gao C  He T  Liu X  Shen J 《Biomacromolecules》2003,4(2):446-452
A novel technique to introduce free amino groups onto polyester scaffolds via aminolyzing the ester groups with diamine has been developed recently. Positively charged chitosan was then deposited onto the aminolyzed poly(l-lactic acid) (PLLA) membrane surface in a layer-by-layer assembly manner using poly(styrene sulfonate, sodium salt) (PSS) as a negatively charged polyelectrolyte. The layer-by-layer deposition process of PSS and chitosan was monitored by UV-vis absorbance spectroscopy, energy transfer by fluorescence spectroscopy, and advancing contact angle measurements. The existed chitosan obviously improved the cytocompatibility of PLLA to human endothelial cells. The cell attachment, activity, and proliferation on the PLLA membranes assembled with three or five bilayers of PSS/chitosan with chitosan as the outermost layer were better than those with one bilayer of PSS/chitosan or the control PLLA. The cells also showed morphology of an elongated shape with abundant cytoplasm, and a confluent cell layer was reached after being cultured for 4 days. Measurement of von Willebrand factor secreted by these endothelial cells (ECs) verified the endothelial function. Hence, better ECs compatible PLLA were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号