首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When [3H]testosterone was infused into the general circulation of the rat, perfusion of a length of the cauda epididymidis (17 +/- 1.0 (s.e.m.) cm, n = 36) with perfusates of varied composition revealed a low entry of radioactivity (1--10% plasma levels; 10 exps) with protein-free perfusates, and a greater entry (15--48%; 10 exps) when the perfusate contained bovine serum albumin (38 mg/ml). When the perfusate contained ovine or rat testicular fluid, or rat epididymal fluid at protein concentrations of 3 mg/ml or less, the entry of radioactivity into the epididymis was greater than when the perfusate contained 3 mg BSA/ml. The addition of ovine rete testis fluid protein (3 mg/ml to BSA (38 mg/ml) in the perfusate increased the uptake of radioactivity (58--106%; 6 exps). Radioactivity in blood was principally associated with testosterone (90, 95% total blood activity, 2 rats), whereas both [3H]testosterone (37, 41% total perfusate activity) and [3H]dihydrotestosterone (42, 63% total perfusate activity) was present in BSA-containing perfusates. The proportion of dihydrotestosterone appeared to increase when the perfusate contained protein of testicular origin.  相似文献   

2.
A double-cannulation apparatus was constructed for continuous perfusion of the pseudocoelom of adult Ascaris suum while maintaining the intact parasite in a controlled incubation chamber. Peristaltic pumps maintained a constant flow rate of artificial perienteric fluid through the incubation chamber (1 ml/min) and through the parasite (100 microliters/min). Based on protein determinations, perienteric fluid was removed from the pseudocoelom within 35 min of initiation of perfusion (3.5 ml). A nonabsorbable dye, Blue Dextran, was detected first in the perfusate 4 min (400 microliters) after initiation of infusion into the pseudocoelom, and was maintained at a constant concentration in the perfusate by 8 min after initiation of dye infusion. Removal of the dye from the pseudocoelom was accomplished within 8 min (800 microliters) after the cessation of dye infusion. Occlusion of the digestive tract had no effect (P less than 0.05) on the short-term (3 hr) absorption of 3H-labeled cholesterol, [14C]-3-o-methylglucose or [14C]glucose from the incubation medium into the perienteric cavity. Concentrations of isotopes in the pseudocoelom reached steady-state levels within 60 min of the initiation of incubation, but remained low (greater than 0.5%) when compared to medium concentration. Similarly, the time course of the accumulation of [14C]glucose into individual tissue components did not differ in intact worms with or without patent intestinal tracts. Thus, the cuticular/muscle tissue largely appears to be the primary route of absorption of cholesterol and glucose in adult A. suum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. The metabolism of hepatic glycogen, labelled with [6-3H]glucose at day 19.5 of gestation and with 14C from [U-14C]galactose at delivery, was followed for 10 h in food-deprived gsd/gsd and control (GSD/GSD) neonatal rats. 2. In the affected pups glycogen was maintained at 12% (w/w) and there was no loss of incorporated radioactivity. 3. The 3H and 14C in glycogen from the controls were both decreased by 80%, but 14C was removed at 0--5 h and [6-3H]glucose at 5--10 h. 4. Blood glucose concentrations in the unaffected neonatal rats fell from 5.3 mM at 20 min to 1.7 mM after 10 h. In the gsd/gsd pups blood glucose concentration was decreased from 2 mM at birth to 0.3 mM at 2.5 h: it was maintained at 0.8 mM between 5 and 10 h. 5. In neonatal rats that had been dead for 10 h, hepatic glycogen was decreased by 34% in the controls and by 22% in the gsd/gsd pups. These results demonstrate that liver from the affected rats contains glycogenolytic activity, but that it is not expressed in living tissue.  相似文献   

4.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

5.
1. Livers from fed rats were perfused in situ with whole rat blood containing glucose labelled uniformly with (14)C and specifically with (3)H at positions 2, 3 or 6. 2. When ethanol was infused at a concentration of 24mumol/ml of blood the rate of utilization was 2.8mumol/min per g of liver. 3. Ethanol infusion raised perfusate glucose concentrations and caused a 2.5-fold increase in hepatic glucose output. 4. Final blood lactate concentrations were decreased in ethanol-infused livers, but the mean uptake of lactate from erythrocyte glycolysis was unaffected. 5. Production of ketone bodies (3-hydroxybutyrate+3-oxobutyrate) and the ratio [3-hydroxybutyrate]/[3-oxobutyrate] were raised by ethanol. 6. Formation of (3)H(2)O from specifically (3)H-labelled glucoses increased in the order [6-(3)H]<[3-(3)H]<[2-(3)H]. Production of (3)H(2)O from [2-(3)H]glucose was significantly greater than that from [3-(3)H]glucose in both control and ethanol-infused livers. Ethanol significantly decreased (3)H(2)O formation from all [(3)H]glucoses. 7. Liver glycogen content was unaffected by ethanol infusion. 8. Production of very-low-density lipoprotein triacylglycerols was inhibited by ethanol and there was a small increase in liver triacylglycerols. Very-low-density-lipoprotein secretion was negatively correlated with the ratio [3-hydroxybutyrate]/[3-oxobutyrate]. Perfusate fatty acid concentrations and molar composition were unaffected by perfusion with ethanol. 9. Ethanol decreased the incorporation of [U-(14)C]glucose into fatty acids and cholesterol. 10. The concentration of total plasma amino acids was unchanged by ethanol, but the concentrations of alanine and glycine were decreased and ([glutamate]+[glutamine]) was raised. 11. It is proposed that the observed effects of ethanol on carbohydrate metabolism are due to an increased conversion of lactate into glucose, possibly by inhibition of pyruvate dehydrogenase. The increase in gluconeogenesis is accompanied by diminished substrate cycling at glucose-glucose 6-phosphate and at fructose 6-phosphate-fructose 1,6-bisphosphate.  相似文献   

6.
1. A method has been developed which enables the rat spleen to be loaded in vivo with [3H]cholesterol to a high specific radioactivity using cholesterol-labelled erythrocytes. The erythrocytes were shown to be rapidly degraded by the spleen and not released intact during subsequent perfusion. 2. When labelled spleens were perfused with whole blood or serum, lipoproteins in the high-density lipoprotein (HDL) range were shown to be the principal lipoprotein vehicles for the removal of cholesterol, the specific radioactivity of cholesterol being much greater in the HDL fractions than in other lipoproteins, particularly in the d 1.175-1.210 fraction. 3. The formation of [3H]cholesteryl ester was restricted to the major HDL fractions. 4. Experiments utilizing individual HDL fractions added to a basal perfusate indicated that HDL1 (d 1.050-1.085) was of less importance in the removal of cholesterol from the spleen than HDL subfractions of higher density. Also, a decrease in density of the lipoproteins was observed during perfusion, concurrent with uptake of cholesterol, especially in the d 1.085-1.125 subfraction. 5. When [3H]cholesterol-labelled spleens were perfused with whole blood, about half of the radioactivity released was detected in erythrocytes, indicating a rapid exchange or transport of cholesterol. Thus erythrocytes could play an important role in the transfer of unesterified cholesterol when the chemical potential gradient is favourable.  相似文献   

7.
1. Of the glucose in rat blood 79.8+/-3.3% (s.d.) was in the plasma. The variance was mostly due to differences between rats. 2. The concentration of glucose in erythrocyte water was 51+/-8% (s.d.) of that in plasma water. 3. The ratio (specific radioactivity in plasma)/(specific radioactivity in whole blood), i.e. the P/B ratio, was estimated for glucose at intervals after intravenous injection of [U-(14)C]glucose and [U-(14)C]fructose. The ratio differed from unity by more than the standard error of a single determination of the specific radioactivity of blood or plasma glucose except from 10 to 17min. after injection of [(14)C]glucose and from 22 to 30min. after injection of [(14)C]fructose. At all other times specific radioactivities in blood had to be corrected to give specific radioactivities in plasma. How to do so is described. 4. The P/B ratios were accounted for by a turnover of glucose in erythrocytes of 0.14mumole/min./ml. of erythrocytes. 5. Metabolism of glucose in rat erythrocytes is unlikely to be a major source of lactate.  相似文献   

8.
In situ and isolated fluid-filled rabbit lungs were used to study the transport of indicators between the air space and vascular compartments. These indicators were placed in either the perfusate or air spaces and samples were collected from the perfusate at intervals during a 1-h perfusion period. At the end of the hour, fluid was pumped out of the air space compartment into serial tubes and indicator concentrations were determined in both the air space and perfusion fluids. One hour after introducing the indicators into the air space, the relative decreases in solute concentration were (arranged from the greatest to the least decline): [14C]urea greater than 36Cl- = 125I- greater than 22Na+ greater than [3H]mannitol. The relative rates at which the indicators appeared in the perfusate were similar. When the indicators were placed in the perfusate, a similar relationship was observed in the increase in air space concentrations, but the loss of 22Na+ from the perfusate was similar to those of 36Cl- and 125I-. Losses of all indicators from the perfusate were two or more times those from the air spaces, and although the loss of [3H]mannitol from the perfusate was similar to that of 22Na+ for about 30 min, subsequent loss was much slower. Very little 125I-albumin traversed the tissue barrier, and the small changes in the concentrations of 125I-albumin in the air spaces suggested that little fluid movement had occurred. These studies suggest that the epithelium is less permeable to solutes than the endothelium and permits passage of anions at a faster rate than 22Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Contribution of propionate to glucose synthesis in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [(14)C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-(14)C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-(14)C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [(14)C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-(14)C]-, [2-(14)C]-, [3-(14)C]- and [U-(14)C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (+/-s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0.33+/-0.03 (4) m-mole/min. and by using a primed infusion was 0.32+/-0.01 (4) m-mole/min. The mean propionate production rate was 1.24+/-0.03 (8) m-moles/min. The conversion of propionate into glucose was 0.36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate.  相似文献   

10.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

11.
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Langendorff isolated rat heart was adapted to the study of minute-to-minute percentage changes in bulk protein degradation by using non-recirculating perfusion. Hearts were perfused at 8 ml/min at 35 degrees C with Krebs-Henseleit buffer containing 11 mM-glucose, and only hearts with regular ventricular rhythm were employed. Proteins were labelled by infusion of [3H]leucine for 0.5 h in vitro. A complete amino acid mixture was then added at 3 times normal rat extracellular concentrations. After labelling, the re-incorporation of [3H]leucine was competitively inhibited by addition of either 4 mM-leucine or 20 microM-cycloheximide. The residual unincorporated radioactivity and the preferentially labelled rapid-turnover proteins were eliminated during a 3 h preliminary perfusion period. The basal rate of release of [3H]leucine and percentage changes were then determined at 1 min intervals, by using each heart as its own control. Leucine metabolism was inconsequential to results. Exchange of intracellular leucine pools with extracellular leucine and subsequent release in effluent perfusate was 95% complete within approx. 2 min. The basal rate of protein degradation was unchanged by electrical stimulation of the heart rate to 360 beats/min or cessation of contractile activity by membrane depolarization under 25 mM-KCl. Infusion of the beta-agonist isoprenaline at 5-500 nM caused a graded inhibition of myocardial protein degradation within 5-6 min, with a maximum inhibition of 30%. This inhibition was sustained for at least 1 h of drug administration and was reversed within 4-6 min of cessation of isoprenaline or simultaneous infusion of 1 microM of the beta-receptor antagonist propranolol. Minute-to-minute adrenergic proteolytic control was a simultaneous co-variable with beta-receptor-mediated inotropic changes in right-intraventricular systolic pressure. Stoppage of the heart in asystole by the Ca2+-channel blocker nifedipine (0.7 microM) delayed the onset, but did not cause sustained reversal, of adrenergic-inhibited degradation, indicating the absence of a direct obligatory mechanistic linkage between the events of the contraction-relaxation cycle and protein degradation in this preparation.  相似文献   

13.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of L-carnitine on myocardial glycolysis, glucose oxidation, and palmitate oxidation were determined in isolated working rat hearts. Hearts were perfused under aerobic conditions with perfusate containing either 11 mM [2-3H/U-14C]glucose in the presence or absence of 1.2 mM palmitate or 11 mM glucose and 1.2 mM [1-14C]palmitate. Myocardial carnitine levels were elevated by perfusing hearts with 10 mM L-carnitine. A 60-min perfusion period resulted in significant increases in total myocardial carnitine from 4376 +/- 211 to 9496 +/- 473 nmol/g dry weight. Glycolysis (measured as 3H2O production) was unchanged in carnitine-treated hearts perfused in the absence of fatty acids (4418 +/- 300 versus 4547 +/- 600 nmol glucose/g dry weight.min). If 1.2 mM palmitate was present in the perfusate, glycolysis decreased almost 2-fold compared with hearts perfused in the absence of fatty acids. In carnitine-treated hearts this drop in glycolysis did not occur (glycolytic rates were 2911 +/- 231 to 4629 +/- 460 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively. Compared with control hearts, glucose oxidation rates (measured as 14CO2 production from [U-14C]glucose) were unaltered in carnitine-treated hearts perfused in the absence of fatty acids (1819 +/- 169 versus 2026 +/- 171 nmol glucose/g dry weight.min, respectively). In the presence of 1.2 mM palmitate, glucose oxidation decreased dramatically in control hearts (11-fold). In carnitine-treated hearts, however, glucose oxidation was significantly greater than control hearts under these conditions (158 +/- 21 to 454 +/- 85 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively). Palmitate oxidation rates (measured as 14CO2 production from [1-14C]palmitate) decreased in the carnitine-treated hearts from 728 +/- 61 to 572 +/- 111 nmol palmitate/g dry weight.min. This probably occurred secondary to an increase in overall ATP production from glucose oxidation (from 5.4 to 14.5% of steady state myocardial ATP production). The results reported in this study provide direct evidence that carnitine can stimulate glucose oxidation in the intact fatty acid perfused heart. This probably occurs secondary to facilitating the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcarnitine, thereby relieving inhibition of the pyruvate dehydrogenase complex.  相似文献   

15.
1. When [(3)H]thymidine was injected intravenously into rats in amounts up to 40mg/kg body wt. and the (3)H radioactivity in the livers measured at 30min, saturation kinetics for thymidine uptake were not found. If the animals were examined 3 min after intravenous injection, saturation could be attained in normal rats with 12mg of thymidine/kg and in partially hepatectomized rats with 4mg/kg. At concentrations of thymidine close to saturation, no differences were found in rate or amount of uptake/g of liver between normal and partially hepatectomized rats 1-2h after operation. 2. Perfusion techniques were used to compare thymidine uptakes in the two sets of rats at concentrations up to 40mum-thymidine. Uptakes with tracer amounts of thymidine after 30min were identical in vivo and in the perfusion studies and were twice as great in livers from partially hepatectomized rats with concentrations up to 40mum-thymidine. 3. At 1.5h after operation there was nearly twice as much beta-aminoisobutyrate present per g of liver from partially hepatectomized as compared with normal rats.  相似文献   

16.
To evaluate the direct effects of a barbiturate on cerebral functions without its influence on brain perfusion pressure, circulatory hormones and metabolites, the electroencephalogram (EEG) was studied in the isolated rat head. Male Wistar rats were anesthetized, and EEG electrodes were inserted into the cranium. A Krebs-Ringer bicarbonate buffer solution containing heparinized rat whole blood, 20 mmol/l glucose, 200 mmol/l mannitol and 0.1 mg/ml dexamethasone was used for the perfusate. The bilateral common carotid arteries were cannulated, pumped at a rate of 6 ml/min and the head was isolated. The venous effluent was reoxygenated and recirculated into the brain. Twenty-five min after isolation of the heads pentobarbital was added to the perfusate at concentrations of 0.1, 0.5 and 2.5 mg/ml. EEG was recorded before and during perfusion. EEG activity could be recorded for more than 25 min after the beginning of perfusion. EEG activity gradually declined from 42+/-5 microV before perfusion (in vivo) to 4+/-1 microV at 25 min after the beginning of perfusion. Then, 3 min after the addition of pentobarbital, the EEG activity became significantly higher in the high dose groups; 12+/-3 microV in the 0.5 mg/ml group (p<0.05) and 12+/-1 microV in 2.5 mg/ml group (p<0.05) compared with the group without pentobarbital (2+/-2 microV). The present study suggests that a barbiturate has mitigating effects on the brain damage induced by the in vitro brain perfusion.  相似文献   

17.
The aim of this study was to determine barriers limiting muscle glucose uptake (MGU) during increased glucose flux created by raising blood glucose in the presence of fixed insulin. The determinants of the maximal velocity (V(max)) of MGU in muscles of different fiber types were defined. Conscious rats were studied during a 4 mU x kg(-1) x min(-1) insulin clamp with plasma glucose at 2.5, 5.5, and 8.5 mM. [U-(14)C]mannitol and 3-O-methyl-[(3)H]glucose ([(3)H]MG) were infused to steady-state levels (t = -180 to 0 min). These isotope infusions were continued from 0 to 40 min with the addition of a 2-deoxy-[(3)H]glucose ([(3)H]DG) infusion. Muscles were excised at t = 40 min. Glucose metabolic index (R(g)) was calculated from muscle-phosphorylated [(3)H]DG. [U-(14)C]mannitol was used to determine extracellular (EC) H(2)O. Glucose at the outer ([G](om)) and inner ([G](im)) sarcolemmal surfaces was determined by the ratio of [(3)H]MG in intracellular to EC H(2)O and muscle glucose. R(g) was comparable at the two higher glucose concentrations, suggesting that rates of uptake near V(max) were reached. In summary, by defining the relationship of arterial glucose to [G](om) and [G](im) in the presence of fixed hyperinsulinemia, it is concluded that 1) V(max) for MGU is limited by extracellular and intracellular barriers in type I fibers, as the sarcolemma is freely permeable to glucose; 2) V(max) is limited in muscles with predominantly type IIb fibers by extracellular resistance and transport resistance; and 3) limits to R(g) are determined by resistance at multiple steps and are better defined by distributed control rather than by a single rate-limiting step.  相似文献   

18.
Inhibition of leukotriene D4 catabolism by D-penicillamine   总被引:5,自引:0,他引:5  
Inhibition of the catabolism of the most biologically potent cysteinyl leukotriene, LTD4, was studied in rat hepatoma cells in vitro and in the rat in vivo. LTD4 dipeptidase, an ectoenzyme on the surface of AS-30D hepatoma cells, exhibited an apparent Km value of 6.6 microM for LTD4. D-Penicillamine and L-penicillamine inhibited this enzyme activity with apparent Ki values of 0.46 mM and 0.21 mM respectively. Bestatin, an inhibitor of the aminopeptidase activity of hepatoma cells, did not affect LTD4 hydrolysis at concentrations as high as 5 mM, indicating that the aminopeptidase did not contribute to LTD4 catabolism. In the rat in vivo, D-penicillamine also inhibited LTD4 catabolism. After intravenous injection of [3H]LTC4 an accumulation of [3H]LTD4 and a retarded formation of [3H]LTE4 were observed in the circulating blood after D-penicillamine pretreatment. Within 1 h after intravenous [3H]LTC4 injection, about 80% of the administered radioactivity was recovered in bile. After D-penicillamine pretreatment [3H]LTD4 was the major biliary leukotriene metabolite, whereas in untreated controls leukotriene metabolites more polar than LTC4 predominated in bile. After stimulation of endogenous leukotriene production in vivo by platelet-activating factor, N-acetyl-LTE4 was the major cysteinyl leukotriene detected in bile. D-Penicillamine treatment prior to platelet-activating factor resulted in the accumulation of LTD4, which under these circumstances was the major endogenous leukotriene metabolite detected in bile.  相似文献   

19.
The uptake and release of carnitine and isovalerylcarnitine have been studied in the perfused rat liver. Labelled carnitine accumulates in rat livers perfused with 50 or 500 microM [3H]carnitine. When alpha-ketoisocaproate (5 mM) is added to the perfusate after 30 min of perfusion, the net uptake of carnitine in the liver stops, and there is even a decrease in liver radioactivity. The decrease in liver carnitine can be attributed to an enhanced formation and efflux to the perfusate of short-chain acylcarnitines. Thin-layer chromatography of liver and perfusate extracts showed that efflux rates for branched-chain acylcarnitines (isovalerylcarnitine) formed are at least 2.5-fold the efflux rate for carnitine. Acetylcarnitine is released about twice as fast as carnitine from the liver. Perfusion with 50 microM [3H]isovalerylcarnitine showed that the influx rate of isovalerylcarnitine exceeds that of carnitine 1.5-fold. Since the efflux rate is still higher, a net loss of carnitine from the liver to the perfusate will result when branched-chain acylcarnitines are formed in the perfused liver. The addition of 500 microM unlabelled carnitine to the perfusate does not influence the release of labelled carnitine or acylcarnitines from the liver, showing that uptake and release are independent processes. Isovalerylcarnitine accumulates faster than carnitine does, also in the perfused rat heart. A mechanism for the development of secondary carnitine deficiencies associated with organic acidemia is proposed.  相似文献   

20.
We used the perfused rat hindquarter to evaluate whether the microdialysis ethanol technique can be used to qualitatively estimate nutritive skeletal muscle blood flow. Four microdialysis probes were inserted in different hindlimb muscles in each of 16 rats. Hindquarters were perfused at blood flow rates ranging from 0 to 21 ml. 100 g-1. min-1. The microdialysis probes were perfused at 2 microliter/min with perfusate containing ethanol, [14C]ethanol, and 3H2O. Within and between experiments outflow-to-inflow ratios (o/i) generally varied inversely with blood flow. When a low flow or no flow was maintained in hindquarters, o/i ratios first increased with time (for at least 60 min) and then leveled off. The long time constant impaired detection of rapid oscillations in blood flow, especially at low blood flow rates. Contractions per se apparently decreased o/i ratios independent of blood flow. Ethanol and [14C]ethanol o/i ratios did not differ. 3H2O o/i paralleled ethanol and [14C]ethanol o/i ratios but it was significantly lower. In conclusion, differences in skeletal muscle blood flow can be detected by the microdialysis technique. However, the slow changes in o/i, in particular at low blood flow rates, limit the usefulness of the technique for measuring dynamic changes in blood flow; caution must also be exerted during muscle contractions. 3H2O and [14C]ethanol are good alternatives to ethanol in the determination of blood flow by microdialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号