首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. Gene targeting was used to evaluate the physiological function of mouse calpain-1 and establish that its inactivation results in reduced platelet aggregation and clot retraction potentially by causing dephosphorylation of platelet proteins. Here, we report that calpain-1 null (Capn1-/-) platelets accumulate protein tyrosine phosphatase 1B (PTP1B), which correlates with enhanced tyrosine phosphatase activity and dephosphorylation of multiple substrates. Treatment of Capn1-/- platelets with bis(N,N-dimethylhydroxamido)hydroxooxovanadate, an inhibitor of tyrosine phosphatases, corrected the aggregation defect and recovered impaired clot retraction. More importantly, platelet aggregation, clot retraction, and tyrosine dephosphorylation defects were rescued in the double knockout mice lacking both calpain-1 and PTP1B. Further evaluation of mutant mice by the ferric chloride-induced arterial injury model suggests that the Capn1-/- mice are relatively resistant to thrombosis in vivo. Together, our results demonstrate that PTP1B is a physiological target of calpain-1 and suggest that a similar mechanism may regulate calpain-1-mediated tyrosine dephosphorylation in other cells.  相似文献   

2.
It has recently been shown that the monoclonal antibody JAQ1 to murine glycoprotein VI (GPVI) can cause aggregation of mouse platelets upon antibody cross-linking and that collagen-induced platelet aggregation can be inhibited by preincubation of platelets with JAQ1 in the absence of cross-linking (Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., and Zirngibl, H. (2000) J. Biol. Chem. 275, 23998-24002). In the present study, we have shown that cross-linking of GPVI by JAQ1 results in tyrosine phosphorylation of the same profile of proteins as that induced by collagen, including the Fc receptor (FcR) gamma-chain, Syk, LAT, SLP-76, and phospholipase C gamma 2. In contrast, platelet aggregation and tyrosine phosphorylation of these proteins were inhibited when mouse platelets were preincubated with JAQ1 in the absence of cross-linking and were subsequently stimulated with a collagen-related peptide (CRP) that is specific for GPVI and low concentrations of collagen. However, at higher concentrations of collagen, but not CRP, aggregation of platelets and tyrosine phosphorylation of the above proteins (except for the adapter LAT) is re-established despite the presence of JAQ1. These observations suggest that a second activatory binding site, which is distinct from the CRP binding site on GPVI on mouse platelets, is occupied in the presence of high concentrations of collagen. Although this could be a second site on GPVI that is activated by a novel motif within the collagen molecule, the absence of LAT phosphorylation in response to collagen in the presence of JAQ1 suggests that this is more likely to be caused by activation of a second receptor that is also coupled to the FcR gamma-chain. The possibility that this response is mediated by a receptor that is not coupled to FcR gamma-chain is excluded on the grounds that aggregation is absent in platelets from FcR gamma-chain-deficient mice.  相似文献   

3.
Platelets were activated with freezing/thawing and thrombin stimulation, and platelet microparticles generated following platelet activation were isolated with ultracentrifugation. The effects of platelet microparticles on platelet activation were studied with annexin V assay, protein tyrosine phosphorylation, and platelet aggregation. Freezing-induced platelet microparticles decreased but thrombin-induced platelet microparticles increased platelet annexin V binding and aggregation. Freshly washed platelets were cryopreserved using epinephrine and dimethyl sulfoxide (Me(2)SO) as combined cryoprotectants, and stimulated with thrombin-induced platelet microparticles. Following incubation of thrombin-induced platelet microparticles, the reaction time of platelets to agonists decreased but the percentages of aggregation increased, such as washed platelets from 44% +/- 30 to 92% +/- 7, p < 0.001, and cryopreserved platelets from 66% +/- 10 to 77% +/- 7, p < 0.02. By increasing platelet aggregability, platelet microparticles recovered after thrombin stimulation improved platelet function for transfusion. A 53-kDa platelet microparticle protein showed little phosphorylation if it was released from resting platelets or platelets stimulated with ADP, epinephrine, propyl gallate or dephosphorylation if it was derived from ionophore A 23187-stimulated platelets. However, the same protein released from frozen platelets showed significant tyrosine phosphorylation. Since a microparticle protein with 53 kDa was compatible with protein tyrosine phosphatase-1B (PTP-1B), its phosphorylation suggests the inhibition of enzyme activity. The microparticle proteins derived from thrombin-stimulated platelets were significantly phosphorylated at 64 kDa and pp60c-src, suggesting that the activation of tyrosine kinases represents a possible mechanism of thrombin-induced platelet microparticles to improve platelet aggregation.  相似文献   

4.
Outside-in integrin alphaIIbbeta3 signaling is required for normal platelet thrombus formation and is triggered by c-Src activation through an unknown mechanism. In this study, we demonstrate an essential role for protein-tyrosine phosphatase (PTP)-1B in this process. In resting platelets, c-Src forms a complex with alphaIIbbeta3 and Csk, which phosphorylates c-Src tyrosine 529 to maintain c-Src autoinhibition. Fibrinogen binding to alphaIIbbeta3 triggers PTP-1B recruitment to the alphaIIbbeta3-c-Src-Csk complex in a manner that is dependent on c-Src and specific tyrosine (tyrosine 152 and 153) and proline (proline 309 and 310) residues in PTP-1B. Studies of PTP-1B-deficient mouse platelets indicate that PTP-1B is required for fibrinogen-dependent Csk dissociation from alphaIIbbeta3, dephosphorylation of c-Src tyrosine 529, and c-Src activation. Furthermore, PTP-1B-deficient platelets are defective in outside-in alphaIIbbeta3 signaling in vitro as manifested by poor spreading on fibrinogen and decreased clot retraction, and they exhibit ineffective Ca2+ signaling and thrombus formation in vivo. Thus, PTP-1B is an essential positive regulator of the initiation of outside-in alphaIIbbeta3 signaling in platelets.  相似文献   

5.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

6.
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase in a phosphotyrosine-dependent manner. The interaction between the two proteins involved the Tec SH2 domain and the C-terminal tyrosine residues Tyr-281, Tyr-303, Tyr-354, and Tyr-381 of PTP20, which were also necessary for tyrosine phosphorylation/dephosphorylation. Association between endogenous PTP20 and Tec was also tyrosine phosphorylation-dependent in the immature B cell line Ramos. Finally, the Tyr-281 residue of PTP20 was shown to be critical for deactivating Tec in Ramos cells upon B cell receptor ligation as well as dephosphorylation and deactivation of Tec and PTP20 itself in transfected COS7 cells. Taken together, PTP20 appears to play a negative role in Tec-mediated signaling, and Tec-PTP20 interaction might represent a negative feedback mechanism.  相似文献   

7.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

8.
J V Frangioni  A Oda  M Smith  E W Salzman    B G Neel 《The EMBO journal》1993,12(12):4843-4856
The non-transmembrane phosphotyrosine phosphatase 1B (PTP-1B) is an abundant enzyme, normally localized to the cytosolic face of the endoplasmic reticulum via a C-terminal targeting sequence. We have found that agonist-induced platelet activation results in proteolytic cleavage of PTP-1B at a site upstream from this targeting sequence, causing subcellular relocation of its catalytic domain from membranes to the cytosol. PTP-1B cleavage is catalyzed by the calcium-dependent neutral protease calpain and is a general feature of platelet agonist-induced aggregation. Moreover, PTP-1B cleavage correlates with the transition from reversible to irreversible platelet aggregation in platelet-rich plasma. Engagement of gpIIb-IIIa is necessary for inducing PTP-1B cleavage, suggesting that integrins regulate tyrosine phosphatases as well as tyrosine kinases. PTP-1B cleavage is accompanied by a 2-fold stimulation of its enzymatic activity, as measured by immune complex phosphatase assay, and correlates with discrete changes in the pattern of tyrosyl phosphorylation. Cleavage and subcellular relocation of PTP-1B represents a novel mechanism for altering tyrosyl phosphorylation that may have important physiological implications in cell types other than platelets.  相似文献   

9.
The dynamics of interaction of the insulin receptor (IR) with Grb14 was monitored, in real time, in living human embryonic kidney cells, using bioluminescence resonance energy transfer (BRET). We observed that insulin rapidly and dose-dependently stimulated this interaction. We also observed that insulin-induced BRET between the IR and protein tyrosine phosphatase 1B (PTP1B) was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the IR, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the extracellular signal-regulated kinase pathway. Increased Grb14 expression in human liver-derived HuH7 cells also seemed to specifically decrease the phosphorylation of Y972. Our work therefore suggests that Grb14 may regulate signalling through the IR by controlling its tyrosine dephosphorylation in a site-specific manner.  相似文献   

10.
The work presented here demonstrates that platelets from mice lacking LAT (linker for the activation of T cells) show reversible aggregation in response to concentrations of collagen that cause TxA2/ADP-dependent irreversible aggregation of control platelets. The aggregation defect of the LAT-deficient platelets was shown to be the result of almost no TxA2 production and significantly diminished ADP secretion. In contrast, the LAT deficiency does not affect aggregation induced by high concentrations of collagen because that aggregation is not dependent on TxA2 and/or ADP. Even though ADP and TxA2 provide amplification signals for platelet activation in response to low concentrations of collagen, LAT-deficient platelets hyperaggregate to low levels of U46619, a TxA2 analog, or ADP. Though the mechanism(s) of costimulatory signals by collagen, ADP, and TxA2 remains unidentified, it is clear that LAT plays a positive role in collagen-induced, TxA2/ADP-dependent aggregation, and a negative role in TxA2 or ADP-induced platelet aggregation.  相似文献   

11.
《Cellular signalling》2014,26(2):279-286
The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARs, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLCγ2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI.Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking β3, in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin β3 signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLCγ2.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in a number of signaling pathways including those mediated by insulin, epidermal growth factor (EGF), and the Src family kinases. The scaffolding protein caveolin-1 is also a participant in these pathways and is specifically phosphorylated on tyrosine 14, when these pathways are activated. Here, we provide evidence that PTP1B can efficiently catalyze the removal of the phosphoryl group from phosphocaveolin-1. Overexpression of PTP1B decreases tyrosine 14 phosphorylation in caveolin-1, while expression of the substrate-trapping mutant PTP1B/D181A causes the accumulation of phosphocaveolin-1 and prevents its dephosphorylation by endogenous PTPs. We further demonstrate that PTP1B physically associates with caveolin-1. Finally, we show that inhibition of PTP1B activity with a potent and specific small molecule PTP1B inhibitor blocks the PTP1B-catalyzed caveolin-1 dephosphorylation both in vitro and in vivo. Taken together, the results strongly suggest that caveolin-1 is a specific substrate for PTP1B. Identification of caveolin-1 as a PTP1B substrate represents an important new step in further understanding the signaling pathways regulated by PTP1B.  相似文献   

13.
In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cgamma2 (PLCgamma2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcgammaRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCgamma2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCgamma2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin alpha(IIb)beta(3) in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCgamma2, leading to downstream responses such as alpha-granule secretion and activation of integrin alpha(IIb)beta(3). The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCgamma2. We propose a model in which LAT and SLP-76 are required for PLCgamma2 phosphorylation but are regulated through independent pathways downstream of Syk.  相似文献   

14.
Lymphocytes migrate from the blood into tissue by binding to and migrating across endothelial cells. One of the endothelial cell adhesion molecules that mediate lymphocyte binding is VCAM-1. We have reported that binding to VCAM-1 activates endothelial cell NADPH oxidase for the generation of reactive oxygen species (ROS). The ROS oxidize and stimulate an increase in protein kinase C (PKC)alpha activity. Furthermore, these signals are required for VCAM-1-dependent lymphocyte migration. In this report, we identify a role for protein tyrosine phosphatase 1B (PTP1B) in the VCAM-1 signaling pathway. In primary cultures of endothelial cells and endothelial cell lines, Ab cross-linking of VCAM-1 stimulated an increase in serine phosphorylation of PTP1B, the active form of PTP1B. Ab cross-linking of VCAM-1 also increased activity of PTP1B. This activation of PTP1B was downstream of NADPH oxidase and PKCalpha in the VCAM-1 signaling pathway as determined with pharmacological inhibitors and antisense approaches. In addition, during VCAM-1 signaling, ROS did not oxidize endothelial cell PTP1B. Instead PTP1B was activated by serine phosphorylation. Importantly, inhibition of PTP1B activity blocked VCAM-1-dependent lymphocyte migration across endothelial cells. In summary, VCAM-1 activates endothelial cell NADPH oxidase to generate ROS, resulting in oxidative activation of PKCalpha and then serine phosphorylation of PTP1B. This PTP1B activity is necessary for VCAM-1-dependent transendothelial lymphocyte migration. These data show, for the first time, a function for PTP1B in VCAM-1-dependent lymphocyte migration.  相似文献   

15.
Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were identified of which 19 had never been previously linked to Rho GTPase pathways, providing novel insight into pathway function. One novel target of RhoA was protein-tyrosine phosphatase 1B (PTP1B), which catalyzes dephosphorylation of key signaling molecules in response to activation of diverse pathways. Subsequent analysis demonstrated that RhoA enhances post-translational modification of PTP1B, inactivates phosphotyrosine phosphatase activity, and up-regulates tyrosine phosphorylation of p130Cas, a key mediator of focal adhesion turnover and cell migration. Thus, protein profiling reveals a novel role for PTP1B as a mediator of RhoA-dependent phosphorylation of p130Cas.  相似文献   

16.
We have studied modulation of “store-operated calcium influx” by tyrosine phosphatases in the pancreatic acinar cell line AR42J and in HEK 293 cells. We show that inhibition of tyrosine phosphatases by bis-(N,N-dimethyl-hydroxamido) hydrooxovanadate (DMHV) leads to an increase in Ca2+ release-activated Ca2+ (CRAC) entry. This effect can be blocked in the presence of 2-aminoethyldiphenyl borate (2-APB). Furthermore, transfection of HEK 293 cells with the human wild-type tyrosine phosphatase PTP1B leads to inhibition of CRAC influx, whereas transfection with the substrate-trapping mutant of PTP1B (D181A) slightly increases Ca2+ influx. It also decreases enzymatic activity of PTP1B as compared to non-transfected cells. Our data suggest that CRAC influx is modulated by tyrosine phosphorylation and dephosphorylation which involves the tyrosine phosphatase PTP1B.  相似文献   

17.
Sustained stimulation of platelets with protease-activated receptor agonists in presence of extracellular calcium was associated with tyrosine dephosphorylation of specific proteins of relative mobilities 35, 67, and 75 kDa. From phosphatase assays and inhibitor studies SHP1, a Src homology 2 (SH2) domain-containing tyrosine phosphatase expressed abundantly in hemopoietic cells, was found to be upregulated in platelets between 25 and 30 min following thrombin stimulation. Concomitantly, SHP1 was tyrosine phosphorylated by, and coprecipitated with, Src tyrosine kinase. SHP1 activation, association with Src and dephosphorylation of specific proteins were dependent on extracellular calcium and maintenance of a higher cytosolic calcium plateau. There was progressive impairment of platelet functions like aggregability and clot retraction, associated with downregulation of fibrinogen-binding affinity of integrin alpha(IIb)beta(3), in the platelets exposed to thrombin for 45 min. This could reflect the late physiological changes in platelets when the cells are consistently exposed to stimulatory signals under thrombogenic environment in vivo.  相似文献   

18.
Platelets provide a useful system for studying Fc gamma receptor-mediated signaling events because these cells express only a single class of Fc gamma receptors and because platelet aggregation and secretion can be activated through Fc gamma receptor stimulation. We report here that stimulation of platelets by cross-linking antibodies to Fc gamma RII or by treatment with an anti-CD9 monoclonal antibody, which acts through Fc gamma RII, causes an induction of tyrosine phosphorylation of multiple platelet proteins. Although the profile of tyrosine-phosphorylated proteins induced by stimulation of this Fc receptor was similar to that induced by thrombin, an additional 40-kDa phosphorylated protein was also detected. This protein co-migrated with Fc gamma RII and was immunoprecipitated with a monoclonal antibody to Fc gamma RII. In addition, after the cross-linking of Fc gamma RII in HEL cells or in COS-1 cells transfected with Fc gamma RII cDNA, the 40-kDa protein immunoprecipitated with anti-Fc gamma RII was also phosphorylated on tyrosine. These data strongly suggest that Fc gamma RII itself is a substrate for a tyrosine kinase(s) activated when Fc gamma RII is stimulated. Fc gamma RII was phosphorylated by the Src protein in vitro, suggesting that this kinase may be responsible for phosphorylation of Fc gamma RII in vivo. These studies establish that activation of platelets and human erythroleukemia cells through Fc gamma RII and CD9 involves an induction of tyrosine phosphorylation of multiple proteins including Fc gamma RII itself and suggest that these phosphorylation events may be involved in Fc gamma RII-mediated cell signaling.  相似文献   

19.
Bruton's tyrosine kinase (Btk) plays a crucial role in the maturation and differentiation of B-lymphocytes and immunoglobulin synthesis. Recently Btk has been described to be present in significant amount in human platelets. To investigate the regulation of this kinase in the platelets we studied its subcellular redistribution in the resting and activated cells. In the resting platelets Btk was almost absent from the actin-based cytoskeleton. Upon challenge of the platelet thrombin receptor upto 30% of total Btk appeared in the cytoskeleton and the protein underwent phosphorylation on tyrosine. Translocation of Btk to the cytoskeleton but not aggregation was prevented by cytochalasin B, which inhibits actin polymerization. Wortmannin and genistein (inhibitors of phosphoinositide 3-kinase and protein tyrosine kinase, respectively) decreased while phenylarsine oxide (a tyrosine phosphatase inhibitor) increased the cytoskeletal content of Btk. The association of Btk with the cytoskeleton was regulated by integrin alpha(IIb)beta(3) and partly reversible. Taken together, these data suggest that Btk might be a component of a signaling complex containing specific cytoskeletal proteins in the activated platelets.  相似文献   

20.
Protein tyrosine phosphatase 1B (PTP1B) attenuates insulin signaling by catalyzing dephosphorylation of insulin receptors (IR) and is an attractive target of potential new drugs for treating the insulin resistance that is central to type II diabetes. Several analogues of cholecystokinin(26)(-)(33) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide, N-acetyl-Asp-Tyr(SO(3)H)-Nle-, was shown to be necessary and sufficient for inhibition. This tripeptide was modified to reduce size and peptide character, and to replace the metabolically unstable sulfotyrosyl group. This led to the discovery of a novel phosphotyrosine bioisostere, 2-carboxymethoxybenzoic acid, and to analogues that were >100-fold more potent than the CCK-8 analogues and >10-fold selective for PTP1B over two other PTP enzymes (LAR and SHP-2), a dual specificity phosphatase (cdc25b), and a serine/threonine phosphatase (calcineurin). These inhibitors disrupted the binding of PTP1B to activated IR in vitro and prevented the loss of tyrosine kinase (IRTK) activity that accompanied PTP1B-catalyzed dephosphorylation of IR. Introduction of these poorly cell permeant inhibitors into insulin-treated cells by microinjection (oocytes) or by esterification to more lipophilic proinhibitors (3T3-L1 adipocytes and L6 myocytes) resulted in increased potency, but not efficacy, of insulin. In some instances, PTP1B inhibitors were insulin-mimetic, suggesting that in unstimulated cells PTP1B may suppress basal IRTK activity. X-ray crystallography of PTP1B-inhibitor complexes revealed that binding of an inhibitor incorporating phenyl-O-malonic acid as a phosphotyrosine bioisostere occurred with the mobile WPD loop in the open conformation, while a closely related inhibitor with a 2-carboxymethoxybenzoic acid bioisostere bound with the WPD loop closed, perhaps accounting for its superior potency. These CCK-derived peptidomimetic inhibitors of PTP1B represent a novel template for further development of potent, selective inhibitors, and their cell activity further justifies the selection of PTP1B as a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号