首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the several known Dictyostelium G protein subunits, the Galpha4 and Galpha5 subunits are the most closely related pair based on phylogenetic analysis and expression patterns, but these subunits perform different roles during development. To investigate potential relationships between these subunits with respect to cell differentiation, chimeric organisms composed of strains lacking or overexpressing either subunit were created and examined for developmental morphogenesis and spore production. Chimeras of galpha4 null and galpha5 null strains or Galpha4 and Galpha5 overexpression strains displayed compensatory morphogenesis, implying that the subunits promote complementary developmental processes. However, chimeras composed of galpha4 null and Galpha5 overexpression strains or galpha5 null and Galpha4 overexpression strains displayed distorted tip morphogenesis, suggesting the strains of these chimeras share common developmental deficiencies. Cells lacking the Galpha5 subunit localized to the prespore region of chimeras similar to the pattern observed for cells overexpressing the Galpha4 subunit, and cells overexpressing the Galpha5 subunit displayed localization patterns similar to galpha4 null mutants. A strain overexpressing both subunits displayed a partial suppression of morphology, gene expression, and cell localization phenotypes associated with the overexpression of the individual Galpha subunit genes, suggesting that each Galpha subunits can inhibit signaling mediated by the other subunit. Overexpression of the Galpha5 subunit inhibited chemotaxis and cGMP accumulation in response to folic acid, indicating that the Galpha5 subunit can inhibit early steps in the Galpha4-mediated signal transduction pathway. The contrasting phenotypes of the Galpha mutants suggest the Galpha4 and Galpha5 subunits provide opposing functions in cell differentiation, localization, and chemotactic responses to folic acid.  相似文献   

2.
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.  相似文献   

3.
盘基网柄菌发育中的细胞粘附分子及其信号转导   总被引:1,自引:0,他引:1  
侯连生  华燕  马宁莎  韩轶 《生命科学》2004,16(4):221-225
在盘基网柄菌发育早期,DdCAD-1和csA调节了变形虫细胞间的粘着,调控该过程的机制类似于胚胎发育中上皮细胞层的闭合。完成网柄菌发育的一个必需分子是gpl50异嗜性粘附分子。盘基网柄菌β-连环蛋白同源物Aardvark(Aar)的缺乏使细胞间失去粘着连接,Aar也有信号转导功能,调控了前孢子细胞基因的表达。因此,细胞间的粘着是盘基网柄菌发育的一个重要组成部分,并与调控形态发生过程的信号转导有密切相互作用关系。  相似文献   

4.
The importance of signal transduction pathways in regulating developmental processes in a number of organisms has become evident in recent years. This is exceptionally clear for Dictyostelium, which uses soluble factors to regulate morphogenesis and cellular differentiation. It is now known that many of these processes are controlled by signal transduction pathways mediated by cyclic AMP through cell surface receptors coupled to G proteins, and that others are mediated by the morphogen DIF.  相似文献   

5.
Push–pull networks are ubiquitous in signal transduction pathways in both prokaryotic and eukaryotic cells. They allow cells to strongly amplify signals via the mechanism of zero-order ultrasensitivity. In a push–pull network, two antagonistic enzymes control the activity of a protein by covalent modification. These enzymes are often uniformly distributed in the cytoplasm. They can, however, also be colocalized in space; for instance, near the pole of the cell. Moreover, it is increasingly recognized that these enzymes can also be spatially separated, leading to gradients of the active form of the messenger protein. Here, we investigate the consequences of the spatial distributions of the enzymes for the amplification properties of push–pull networks. Our calculations reveal that enzyme localization by itself can have a dramatic effect on the gain. The gain is maximized when the two enzymes are either uniformly distributed or colocalized in one region in the cell. Depending on the diffusion constants, however, the sharpness of the response can be strongly reduced when the enzymes are spatially separated. We discuss how our predictions could be tested experimentally.  相似文献   

6.
The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.  相似文献   

7.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

8.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

9.
10.
Kurose H 《Life sciences》2003,74(2-3):155-161
It is generally thought that Galpha(12) and Galpha(13)-induced responses are exclusively mediated by small G protein Rho. However, Galpha(12) and Galpha(13) elicit divergent cellular responses: phospholipase C-epsilon activation, phospholipase D activation, cytoskeletal change, oncogenic response, apoptosis, MAP kinase activation and Na/H-exchange activation. In addition to Rho activation through RhoGEF, it has been recently demonstrated that Galpha(12) and Galpha(13) interact with several proteins and regulate their activities. However, physiological importance of the interaction of Galpha(12) and Galpha(13) with these proteins has not fully established. I summarize the recent progress of Galpha(12) and Galpha(13)-mediated signaling cascade.  相似文献   

11.
Wnt signal transduction pathways   总被引:5,自引:0,他引:5  
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.Key words: Wnt, frizzled, dishevelled, canonical, non-canonical, β-catenin, Planar Cell Polarity  相似文献   

12.
《Organogenesis》2013,9(2):68-75
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.  相似文献   

13.
Apoptotic signal transduction: emerging pathways.   总被引:9,自引:0,他引:9  
Apoptosis is a counterbalance to mechanisms of cell proliferation and is critically important in regulation of the immune system, development, and normal tissue homeostasis. Mammalian signal transduction pathways affecting apoptosis are more complex than their counterparts in the nematode Caenorhabditis elegans, a valuable model system that has provided powerful initial insights into key molecules regulating apoptosis. Despite this complexity, substantial progress has been made in recent years towards defining the nature and detail of signalling pathways bringing about apoptosis in mammalian cells. In particular, the identity and precise substrate specificities of a large family of caspase enzymes, implicated as critical components of the apoptotic machinery, have been defined. In addition, the mechanism by which the cell surface Fas receptor mediates induction of apoptosis, via activation of caspases, has recently been elucidated. A prominent role for mitochondria in cell death pathways has also recently emerged, a clear theme being that mitochondria can trigger degradative events by the release of apoptogenic proteins (e.g., cytochrome c) from the intermembrane space to the cytosol. This review focuses on recent progress in these areas and discusses integration of this knowledge in our overall understanding of the processes that control apoptosis.  相似文献   

14.
15.
16.
Upon starvation, individual Dictyostelium discoideum cells enter a developmental program that leads to collective migration and the formation of a multicellular organism. The process is mediated by extracellular cAMP binding to the G protein-coupled cAMP receptor 1, which initiates a signaling cascade leading to the activation of adenylyl cyclase A (ACA), the synthesis and secretion of additional cAMP, and an autocrine and paracrine activation loop. The release of cAMP allows neighboring cells to polarize and migrate directionally and form characteristic chains of cells called streams. We now report that cAMP relay can be measured biochemically by assessing ACA, ERK2, and TORC2 activities at successive time points in development after stimulating cells with subsaturating concentrations of cAMP. We also find that the activation profiles of ACA, ERK2, and TORC2 change in the course of development, with later developed cells showing a loss of sensitivity to the relayed signal. We examined mutants in PKA activity that have been associated with precocious development and find that this loss in responsiveness occurs earlier in these mutants. Remarkably, we show that this loss in sensitivity correlates with a switch in migration patterns as cells transition from streams to aggregates. We propose that as cells proceed through development, the cAMP-induced desensitization and down-regulation of cAMP receptor 1 impacts the sensitivities of chemotactic signaling cascades leading to changes in migration patterns.  相似文献   

17.
The phytochromes are the best studied plant photoreceptors, controlling a wide variety of responses at both whole plant and single cell levels. Three signal transduction pathways, dependent on cGMP and/or calcium, have been found to be utilized by phytochrome to control the expression of genes required for chloroplast development (e.g., CAB and FNR) and anthocyanin biosynthesis (e.g., CHS). In particular, cGMP is a second messenger positively regulating CHS gene expression whilst calcium and calmodulin act as negative regulators. In addition to phytochrome regulation of CHS we have begun to examine the signal transduction pathways utilized by UV photoreceptors. In contrast to phytochrome-mediated responses, results indicate a role for calcium and calmodulin as positive regulators of CHS gene expression in UV light.  相似文献   

18.
《The Journal of cell biology》1995,129(5):1251-1262
Dictyostelium discoideum initiates development when cells overgrow their bacterial food source and starve. To coordinate development, the cells monitor the extracellular level of a protein, conditioned medium factor (CMF), secreted by starved cells. When a majority of the cells in a given area have starved, as signaled by CMF secretion, the extracellular level of CMF rises above a threshold value and permits aggregation of the starved cells. The cells aggregate using relayed pulses of cAMP as the chemoattractant. Cells in which CMF accumulation has been blocked by antisense do not aggregate except in the presence of exogenous CMF. We find that these cells are viable but do not chemotax towards cAMP. Videomicroscopy indicates that the inability of CMF antisense cells to chemotax is not due to a gross defect in motility, although both video and scanning electron microscopy indicate that CMF increases the frequency of pseudopod formation. The activations of Ca2+ influx, adenylyl cyclase, and guanylyl cyclase in response to a pulse of cAMP are strongly inhibited in cells lacking CMF, but are rescued by as little as 10 s exposure of cells to CMF. The activation of phospholipase C by cAMP is not affected by CMF. Northern blots indicate normal levels of the cAMP receptor mRNA in CMF antisense cells during development, while cAMP binding assays and Scatchard plots indicate that CMF antisense cells contain normal levels of the cAMP receptor. In Dictyostelium, both adenylyl and guanylyl cyclases are activated via G proteins. We find that the interaction of the cAMP receptor with G proteins in vitro is not measurably affected by CMF, whereas the activation of adenylyl cyclase by G proteins requires cells to have been exposed to CMF. CMF thus appears to regulate aggregation by regulating an early step of cAMP signal transduction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号