首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A spectrophotometric assay of 2':3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37) based on the use of an acid-base indicator and a buffer having identical pKa values is described. The assay is simple and rapid; it was particularly convenient for monitoring the enzyme activity at various stages of purification. 2. Several proteinases were examined for their ability to solubilize 2':3'-cyclic nucleotide 3'-phosphodiesterase from delipidated brain white matter. Trypsin (EC 3.4.21.4) and elastase (EC 3.4.21.11) appeared to be more effective than the other proteinases examined. Trypsin, however, caused inactivation; elastase was therefore chosen to solubilize 2':3'-cyclic nucleotide 3'-phosphodiesterase. When a partially purified preparation of 2':3'-cyclic nucleotide 3'-phosphodiesterase was treated with elastase, 2':3'-cyclic nucleotide 3'-phosphodiesterase was solubilized nearly quantitatively. Elastatinal, a specific inhibitor of elastase, specifically inhibited the solubilization with elastase. 3. 2':3'-cyclic nucleotide 3'-phosphodiesterase was purified from bovine brain white matter by: (i) delipidation; (ii) solubilization with hexadecyltrimethylammonium bromide; (iii) gel chromatography on Sepharose; (iv) ethanol precipitation and resolubilization by digestion with elastase; (v) chromatography on DEAE-Sephadex; (vi) affinity chromatography on 8-(6-aminohexyl)amino-2'-AMP-Sepharose. 4. The purified enzyme migrated as a single protein band on polyacrylamide-gel electrophoresis at pH 4.3 and on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the estimated mol.wt. in the latter electrophoresis was 27000-31000. Gel filtration of the purified enzyme through Sephadex G-150 indicated a mol.wt. of 31000. Therefore the purified enzyme is a monomer protein with a mol.wt. of approx. 30000.  相似文献   

2.
Abstract— The purification of small amounts of 2',3'-cyclic nucleotide 3'-phosphohydrolase from bovine white matter by ion-exchange techniques (D rummond et al. , 1978) has been used to provide antigen for the production of specific rabbit antibodies to this enzyme. Specific antibody has been purified from immune serum by affinity chromatography on a column of Sepharose to which the enzyme has been attached, and the purified antibody has been coupled to cyanogen bromide-activated Sepharose. Affinity chromatography on the immunoadsorbent effectively purifies 2',3'-cyclic nucleotide 3 -phosphohydrolase in one step from an extract of an acetone powder made from bovine white matter. This modified purification procedure has reduced the time required for purification and increased the yield of the enzyme to 57%. In SDS-gel electrophoresis in phosphate buffer the enzyme migrates as an aggregate of about 98,000MW. When the buffer is Tris-glycine, the apparent MW is about 44,000 and under specific conditions two proteins of only slightly different mobilities can be discerned. Within experimental error the amino acid compositions of the proteins in the two bands are indistinguishable. Peptide patterns obtained by polyacrylamide gel electrophoresis following proteolytic digestion with Straphylococcus aureus V8 protease or papain show extensive structural homology between the two proteins, but detectable differences are apparent.  相似文献   

3.
The 2',3'-cyclic nucleotide 3'-phosphodiesterase which hydrolyzes nucleoside 2',3'-cyclic phosphates (N greater than p) to nucleoside 2'-phosphates has been purified 16,000-fold to near homogeneity from wheat germ. The purified enzyme is a single polypeptide with a molecular weight of 23,000-24,000. It has a pH optimum of 7.0. The apparent Km values for A greater than p, G greater than p, C greater than p, and U greater than p are 13.1, 9.2, 25.2, and 25.3 mM, respectively. Vmax values for A greater than p, G greater than p, C greater than p, and U greater than p are 2090, 280, 2140, and 600 mumol/min/mg of purified protein, respectively. Wheat germ 2',3'-cyclic nucleotide 3'-phosphodiesterase does not hydrolyze 2',3'-cyclic esters in cyclic phosphate-terminated oligoribonucleotides or in nucleoside 5'-phosphate, 2',3'-cyclic phosphate (pN greater than p). This is in contrast to the 3'-phosphodiesterase activity associated with a wheat germ RNA ligase which hydrolyzes cyclic phosphate-terminated oligonucleotides and pN greater than p substrates much more efficiently than nucleoside 2',3'-cyclic phosphates. The enzyme characterized in this work appears to be the only known 2',3'-cyclic nucleotide 3'-phosphodiesterase specific for 2',3'-cyclic mononucleotides.  相似文献   

4.
Monoclonal antibody against 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with delipidated white matter from rat corpus callosum. The antibody was characterized by solid-phase radioimmunoassay, immunoblot of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoprecipitation from C6 glioma cells, and indirect immunofluorescence staining of monolayer cultures containing oligodendrocytes. The monoclonal antibody bound specifically to an intracellular antigen of oligodendrocytes, but not to Schwann cells, astrocytes, neurons, or fibroblast cytoplasm. The immunoblot of SDS-PAGE of CNS myelin showed that the antibody identified two protein bands at 48,000 and 50,000 molecular weight. These proteins were not identified in peripheral nervous system myelin. The monoclonal antibody immunoprecipitated CNP enzyme activity from extracts of C6 glioma cells. This monoclonal antibody should prove useful in further study of this myelin-specific enzyme in CNS myelin and in cells responsible for myelin production.  相似文献   

5.
A method is presented for the separation and detection of the myelin marker enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase on isoelectric focusing gels and by immunoblotting. The gel staining procedure is a modification of a method used to demonstrate enzyme activity on blots after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis. The results show that immunologically active 2',3'-cyclic nucleotide 3'-phosphodiesterase can be separated under equilibrium conditions on isoelectric focusing gels with an expanded alkaline pH range after solubilization in a mixture of nonionic/zwitterionic detergents and urea. Enzymatically active 2',3'-cyclic nucleotide 3'-phosphodiesterase focused as two closely spaced bands at pIapp 8.1 and 8.8, respectively, while 2',3'-cyclic nucleotide 3'-phosphodiesterase immunoreactivity was detected as four distinct bands at pIapp 4.2, 7.4, 8.8, and 9.3 and a diffuse band at pIapp 7.9-8.2. By two-dimensional separation these five bands showed molecular weights of about 43-47 kDa, i.e., corresponding to reported values for immunologically active 2',3'-cyclic nucleotide 3'-phosphodiesterase. Since enzyme activity is associated with only two of the bands, nonspecific and artifactual banding due to, e.g., detergent micelle formation, is unlikely.  相似文献   

6.
K Ogi  M Irie 《Journal of biochemistry》1975,77(5):1085-1094
From a commercial digestive produced from Aspergillus saitoi, a ribonuclease [EC 3.1.4.23] having a molecular weight of 12,500 has been isolated in addition to the RNase reported previously, which had a molecular weight of 38,000. The enzyme was found to be homogeneous by chromatography on DEAE-cellulose, disc electrophoresis on polyacrylamide gel, and ultracentrifugation. The NH2-terminal amino acid was identified as glutamic acid. The amino acid composition indicated the presence of about 13 tyrosyl residues, 3 histidyl residues, and 2 half-cystine residues. The pH optimum of the RNase was 4.5, using RNA as a substrate. The enzyme was stable on heating at 70 degrees for 5 min from pH 2 to 10. It hydrolysed RNA completely to mononucleotides via 2', 3'-cyclic nucleotides. The rates of release of nucleotides and 2', 3'-cyclic nucleotides were in the order: guanylic acid is greater than adenylic acid is greater than cytidylic acid is greater than uridylic acid.  相似文献   

7.
1. In the presence of Ca2+, a 5.3-S 3':5'-cyclic nucleotide phosphodiesterase (EC 3.1.4.17) from bovine ventricle was isolated and purified by (NH4)2SO4 precipitation and DEAE-cellulose and Affi-Gel Blue chromatography. The enzyme activity was enriched 800-fold by these procedures. 2. Sucrose-density gradient centrifugation, gel filtration and non-denaturing polyacrylamide-gel electrophoresis resolved a single enzyme species with an Mr of 89 000. 3. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the purified enzyme demonstrated a prominent protein band at Mr 59000 and a minor band of Mr 28000. Calmodulin was not detected. 4. The hydrolysis of micromolar concentrations of 3':5'-cyclic guanosine monophosphate (cyclic GMP) but not 3':5'-cyclic adenosine monophosphate (cyclic AMP) was stimulated by calmodulin. 5. Anomalous biphasic kinetics plots were observed for both the catalysis of cyclic AMP and cyclic GMP hydrolysis. Kinetic plots became linear in the presence of calmodulin. 6. After several months of storage at -20 degrees C, the 5.3-S enzyme was transformed into a 6.2-S cyclic GMP-specific enzyme and a 4.4-S non-specific form.  相似文献   

8.
Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500-3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNP1 protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.  相似文献   

9.
The membrane-bound enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase has been purified from acetone powders of bovine white matter and spinal cord. Affinity chromatography on AMP-Sepharose has been used as the final step in the chromatographic purifications. The yield was about 3 mg of purified enzyme per 100 g of tissue in each instance. The enzymes from the two sources were indistinguishable by chromatography, gel electrophoresis, and amino acid analysis; the enzyme from spinal cord, however, has shown a specific activity of 225 units/mg compared to 342 units/mg for the enzyme from white matter. Both proteins had a molecular weight of 100,000 by gel filtration and 50,000 by sodium dodecyl sulfate-gel electrophoresis under reducing conditions. The properties of the enzyme, including amino acid composition determined on the purified soluble protein and on the protein purified by sodium dodecyl sulfate-gel electrophoresis, were those of a basic hydrophobic protein.  相似文献   

10.
The 2':3'-cyclic nucleotide phosphodiesterase:3'-nucleotidase of Haemophilus influenzae was purified from a periplasmic preparation by affinity chromatographic techniques. The enzyme-catalysed hydrolysis of 2':3'-cyclic AMP to adenosine without accumulation of the intermediate substrate 3'-AMP was demonstrated by high performance liquid chromatography. Competitive inhibition of the enzyme by a variety of nucleosides and mononucleotides indicated the presence of either purine or pyrimidine bases to be essential for selective interactions with the enzyme, and confirmed the need for a 3'-position phosphate for the functioning of mononucleotides as substrates for the enzyme. The enzyme had a molecular weight of 79 000, was stable at low temperatures and was thermally denatured at temperatures above 50 degrees C.  相似文献   

11.
The adrenal medulla contains an enzyme which catalyzes the hydrolysis of 2',3'-cAMP to 2'-AMP. For the parameters which have been examined, the adrenal medulla 2',3'-cAMP phosphodiesterase appears to be similar to brain 2',3'-cyclic nucleotide 3'-phosphodiesterase (also commonly referred to as CNPase). The apparent Km of the adrenal medulla CNPase for 2',3'-cAMP is 0.88 mM. The enzyme activity is unaltered by either EDTA, MgCl2 or CaCl2 in the presence or absence of calmodulin. The apparent molecular weight is 102,500 daltons. The function of the enzyme in either the brain or the adrenal medulla is, at the present time, unknown.  相似文献   

12.
The present paper establishes a 5'-polynucleotide kinase activity associated with the bovine and human brain enzyme 2':3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37) in addition to known extremely high hydrolysis rates against 2':3'-cyclic nucleotides. Modulation of the enzyme activity by the addition of polyadenylate (5') and polyuridylate (5'), histone F3, myelin basic protein (MBP), and other basic molecules suggest that RNA may be the natural substrate for both enzymes. These enzymes, isolated from brain and present in very high activities in oligodendrocytes and in isolated myelin, probably have complex functions.  相似文献   

13.
R Kumar  K C Yuh  M Tao 《Enzyme》1978,23(2):73-83
Two adenosine 3',5'-cyclic monophosphate (cyclic-AMP)-binding protein factors (molecular weight 230,000) have been partially purified from human erythrocytes. One of these proteins seems to be different from the cyclic-AMP-binding component of the cyclic-AMP-dependent protein kinases. These protein factors are also capable of binding adenosine. We present data also on two forms of cyclic-AMP-dependent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) partially purified from the cytosol of normal human erythrocytes. Kinase I has been classified as type I enzyme on the basis of its activation when preincubated with protamine, histone or NaCl. The substrate specificities of the two kinases and many of their kinetic parameters are rather similar. Their subunit structure is reminiscent of that of kinases obtained from other sources. The catalytic subunit of both enzymes reversibly cross-react with the regulatory subunit of kinase I from the rabbit red blood cell.  相似文献   

14.
Abstract: Purified myelin from rat brainstem was found to have an appreciable level of guanylyl cyclase activity, as seen in the formation of 3',5'-cyclic GMP from [3H]GTP at a rate ∼45% that of whole brainstem. Freshly isolated myelin from pooled rat brain-stems was incubated with GTP in an appropriate mixture. This gave rise to 29.9 ± 3.6 pmol of 3',5'-cyclic GMP/mg of protein/min measured by HPLC and a similar result (26.7 ± 2.6 pmol/mg/min) with 125l-3',5'-cyclic GMP radioimmunoassay. The latter method applied to the reaction product from whole brainstem gave a value of 56.6 ± 3.4 pmol/mg/min. In analyzing brainstem products by HPLC we observed in most trials concurrent formation of a second radiolabeled product that comigrated with 2',3'-cyclic GMP but that, on further examination, proved not to be that product. Its identity remains unknown.  相似文献   

15.
2',3'-Cyclic nucleotide 3'-phosphohydrolase (nucleoside-2':3'-cyclic-phosphate 2'-nucleotidohydrolase, EC 3.1.4.37) activity has been demonstrated in rat liver mitochondria. The enzyme was localized in both the outer and inner mitochondrial membranes but was absent from the intermembrane space and matrix. The mitochondrial (cyclic nucleotide) phosphohydrolase was activated by freezing and thawing and by treatment with digitonin or detergents. It is suggested that (cyclic nucleotide) phosphohydrolase is an integral membrane protein which is buried to a significant degree within the membrane. Atractyloside was found to be a noncompetitive inhibitor of the enzyme both in intact mitochondria and in preparations of the mitochondrial membranes. The enzyme substrate, 2',3'-cyclic adenosine monophosphate, had no effect on the oxidation of exogenous beta-hydroxybutyrate or succinate by intact mitochondria. These findings suggest that 2',3'-cyclic nucleotide 3'phosphohydrolase is more widely distributed than was previously thought and that the enzyme may play a fundamental role in membranes, independent of their specialized structure or functions.  相似文献   

16.
The enzyme 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was isolated from bovine brain white matter by a rapid (72 h) procedure. The minimum molecular weight (MW) of the enzyme was approximately 52,500 as estimated by sucrose density gradient analysis. When this isolated enzyme was stimulated with bovine serum albumin (BSA), the peak of activity was shifted to approximately 90,000 MW. Prior treatment by trypsin blocked the expression of the higher MW form of CNPase, but not the BSA activation of the enzyme. If the trypsin digestion was allowed to progress, the MW was gradually lowered to a broad peak sedimenting between 20,000 and 50,000 MW. An apparently soluble form of CNPase found in serum is described. Kinetic and MW comparisons between the serum soluble enzyme and CNPase isolated from bovine brain, as well as an analysis of substrate specificity, were made and it was concluded that the two enzymes were identical.  相似文献   

17.
The mechanism of action of purified wheat germ RNA ligase has been examined. ATP was absolutely required for the ligation of substrates containing 5'-OH or 5'-P and 2',3'-cyclic P or 2'-P termini. Ligation of 1 mol of 5'-P-2',3'-cyclic P-terminated poly(A) was accompanied by the hydrolysis of 1 mol of ATP to 1 mol each of AMP and PPi. Purified RNA ligase catalyzed an ATP-PPi exchange reaction, specific for ATP and dATP, and formed a covalent enzyme-adenylate complex that was detected by autoradiography following incubation with [alpha-32P]ATP and separation of the products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein doublet with a molecular weight of approximately 110 kDa, the major product detected by silver staining, was labeled in these reactions. Isolated E-AMP complex was dissociated by the addition of ligatable poly(A), containing 5'-P-2',3'-cyclic P termini, to yield AMP and by the addition of PPi to yield ATP. The unique feature of the reactions leading to an exchange reaction between ATP and PPi and to the formation of an E-AMP complex was their marked stimulation (up to 400-fold) by the addition of RNA. This property distinguishes the wheat germ RNA ligase from other known RNA and DNA ligases which catalyze ATP-PPi exchange reactions and form E-AMP complexes in the absence of substrate. Thus, RNA appears to function in two capacities in the wheat germ system: as a cofactor, to stimulate the reaction of the enzyme with ATP, and as an authentic substrate for ligation.  相似文献   

18.
Purified bovine brain 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) migrates as a protein double band in SDS-polyacrylamide gel electrophoresis. The positions of the two protein bands correspond to approximate molecular weights (MW) of 56,000 and 53,000. Limited protease treatment of isolated CNPase leads to subsequent degradation of the enzyme into smaller polypeptides having MWs of approximately 40,000, 30,000, and 20,000. During proteolytic digestion CNPase remains enzymatically active. Binding studies with several immobilized plant lectins as well as periodic acid-Schiff reagent (PAS) staining of SDS gels indicate that CNPase is a glycoprotein. An antiserum against purified CNPase, prepared in rabbits, was used to confirm the immunological identity of various CNPase preparations obtained in our laboratory.  相似文献   

19.
Abstract– 2',3'-Cyclic NADP has been prepared by cyclization of NADP at pH 6 in the presence of l-ethyl-(3-dimethylaminopropyl)-carbodiimide. The NADP derivative is readily hydrolyzed to NADP by the enzyme in brain and nerve that hydrolyzes 2',3'-cyclic nucleotides to 2'-phospho esters. The K m for this substrate is the same as that for 2',3'-cyclic AMP (0.22 m m ) at pH 6 and 25°C. The two substrates are hydrolyzed by the phosphohydrolase at similar maximum velocities. The nicotinamide moiety in cyclic NADP thus has little effect on the enzyme-substrate interaction. This synthetic substrate can be used in a rapid (2 min) and sensitive (10 ng of 31-fold purified enzyme) spectrophotometric coupled enzyme assay for 2',3'-cyclic nucleotide 3'-phosphohydrolase; in this assay the hydrolysis proceeds in the presence of glucose-6-phosphate dehydrogenase and its substrate and the NADPH formed is measured by the increase in absorbance at 340 nm. The assay is applicable to tissue extracts as well as to purified preparations of the enzyme. There is no interference from nucleases of the pancreatic RNase A type.  相似文献   

20.
The phosphorylation of troponin I from cardiac muscle.   总被引:1,自引:0,他引:1  
1. Troponin I isolated from fresh cardiac muscle by affinity chromatography contains about 1.9 mol of covalently bound phosphate/mol. Similar preparations of white-skeletal-muscle troponin I contain about 0.5 mol of phosphate/mol. 2. A 3':5'-cyclic AMP-dependent protein kinase and a protein phosphatase are associated with troponin isolated from cardiac muscle. 3. Bovine cardiac 3':5'-cyclic AMP-dependent protein kinase catalyses the phosphorylation of cardiac troponin I 30 times faster than white-skeletal-muscle troponin I. 4. Troponin I is the only component of cardiac troponin phosphorylated at a significant rate by the endogenous or a bovine cardiac 3':5'-cyclic AMP-dependent protein kinase. 5. Phosphorylase kinase catalyses the phosphorylation of cardiac troponin I at similar or slightly faster rates than white-skeletal-muscle troponin I. 6. Troponin C inhibits the phosphorylation of cardiac and skeletal troponin I catalysed by phosphorylase kinase and the phosphorylation of white skeletal troponin I catalysed by 3':5'-cyclic AMP-dependent protein kinase; the phosphorylation of cardiac troponin I catalysed by the latter enzyme is not inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号