首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

2.
Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday  相似文献   

3.
The distribution of cholecystokinin-like immunoreactivity was studied in the central nervous system of the heteropteran insect Triatoma infestans using high-sensitivity immunocytochemistry. In the protocerebrum, CCK-IR somata were observed in the anteromedial, anterolateral and posterior cell-body layers. The neuropils displayed different densities of immunoreactive neurites. Few immunoreactive somata were found in the optic lobe in both the medial and lateral soma rinds, as well as in the proximal optic lobe. Immunoreactive fibers were present in the medulla and lobula neuropils. The sensory deutocerebrum contained a higher number of immunopositive perikarya than the antennal mechanosensory and motor center. The antennal lobe glomeruli displayed a moderate density of immunoreactive fibers. With regard to the subesophageal ganglion, numerous CCK-IR somata were found close to the root of the mandibular nerve; others were present in the soma rind of the remaining neuromeres. CCK-IR perikarya were present in both thoracic ganglia, with the abdominal neuromeres containing the highest number of positive somata. The neuropils of both ganglia showed moderate densities of immunopositive processes. The distribution of CCK-LI in somata and neuropils of central nervous system of T. infestans is widespread suggesting that a CCK-like peptide may act mainly as a neuromodulator in the integration of information from distinct sensory receptors.  相似文献   

4.
Summary The distribution of an immunoreactive endothelin-1-like peptide was investigated in the nereid, Neanthes diversicolor, using an antiserum raised against synthetic endothelin-1. Immunoreactive perikarya were localized in the brain, and nerve fibers containing endothelin-1-like material were found in the neuropil occupying the central portion of the brain. No immunostained fiber elements were traced in the circumesophageal connectives. Immunoreactive perikarya occurred in the subesophageal ganglion. From this ganglion, specifically stained fibers run posteriorly toward the ventral nerve cord. In each segmental ganglion, immunoreactive neurons were observed in medio-ventral and latero-ventral regions, and one or two marked fibers extended to the parapodium. In the parapodium, small immunoreactive perikarya and fiber elements were visible. Immunolabeled fibers occurred in the stomatogastric nerves, in the wall of the buccal cavity, and in the pharynx, esophagus, intestine and its anal region. Immunoreactive perikarya and nerve fibers were visualized between the circular muscle layer and epithelial cell layer in the esophagus and intestine. The endothelin-1-like substance shown to occur in N. diversicolor appears to function as a neurotransmitter or neuromodulator.  相似文献   

5.
The distribution of corazonin in the central nervous system of the heteropteran insect Triatoma infestans was studied by immunohistochemistry. The presence of corazonin isoforms was investigated using MALDI-TOF mass spectrometry in samples containing the brain, the subesophageal ganglion, the corpora cardiaca-corpus allatum complex and the anterior part of the aorta. Several groups of immunopositive perikarya were detected in the brain, the subesophageal ganglion and the thoracic ganglia. Regarding the brain, three clusters were observed in the protocerebrum. One of these clusters was formed by somata located near the entrance of the ocellar nerves whose fibers supplied the aorta and the corpora cardiaca. The remaining groups of the protocerebrum were located in the lateral soma cortex and at the boundary of the protocerebrum with the optic lobe. The optic lobe housed immunoreactive somata in the medial soma layer of the lobula and at the level of the first optic chiasma. The neuropils of the deutocerebrum and the tritocerebrum were immunostained, but no immunoreactive perikarya were detected. In the subesophageal ganglion, immunostained somata were found in the soma layers of the mandibular and labial neuromeres, whereas in the mesothoracic ganglionic mass, they were observed in the mesothoracic, metathoracic and abdominal neuromeres. Immunostained neurites were also found in the esophageal wall. The distribution pattern of corazonin like immunoreactivity in the central nervous system of this species suggests that corazonin may act as a neurohormone. Mass spectrometric analysis revealed that [Arg7]-corazonin was the only isoform of the neuropeptide present in T. infestans tissue samples.  相似文献   

6.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

7.
Immunohistochemical techniques were used to study the distribution of serotonin-containing neurons in the nervous system of the slug Limax valentianus. Approximately 350 serotonin-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, pedal, visceral and right parietal ganglia. Most serotonin-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters. A pair of previously identified metacerebral giant cells were found on the anterior side of the cerebral ganglion, and two additional pairs of uniquely identifiable, serotonin-like immunoreactive cells were found on the posterior side of the cerebral ganglion. The whole-mount maps of these stained neurons will be useful in further physiological and biochemical studies of olfactory learning at the cellular level in Limax valentianus.This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports and Technology, Japan (nos. 12307053 and 13771353)  相似文献   

8.
Summary Polyclonal antibodies were raised in rabbits against synthetic crustacean cardioactive peptide (CCAP) conjugated to bovine thyroglobulin, and were used to map CCAP-immunoreactive structures in the central nervous system of Carcinus maenas. As expected, the neurohemal pericardial organs (PO) displayed abundant immunoreactivity in nerve fibers and terminals. In addition, immunoreactive neurons were demonstrated in other parts of the nervous system. At least some of them do not appear to terminate in neurohemal structures and may have a non-endocrine, as yet unknown function. Immunoreactive perikarya with a diameter of 25–30 m occur in the brain. They project into the optic and antennary neuropil, and into the eyestalk. One cell was found in the medulla terminalis of the eyestalk and in the connective ganglion, respectively. From the latter, axonal branches could be traced into the brain and the thoracic ganglia (TG). In the TG, small-diameter perikarya give rise to extensive networks of varicose fibers. Some of the perikarya occur in a characteristic paired arrangement with larger CCAP-immunoreactive somata (diameter 40–50 m). These pairs of one small and one large cell occur in all mouthpart and leg segments of the TG, except the abdominal ganglia (AG), where only large cells were found. The main projections of the large neurons comprise one or more fibers in each of the seven segmental nerves (SN), leading to neurosecretory terminals in the PO. The fibers in the SN are joined by branches of an ascending axonal tract from the large perikarya in the AG. The large-type perikarya are considered to be the principal source of CCAP in the PO. The optic ganglia in the eyestalk, except the medulla terminalis, the neurohemal sinus gland and the stomatogastric nervous system are devoid of CCAP-immunoreactivity.In axon terminals of the PO, CCAP is not colocalized with other PO-neuropeptides, i.e. proctolin-, FMRFamide-like, and Leu-enkephalin-like immunoreactive materials. Electron-microscopic immunocytochemistry revealed a distinct CCAP-containing granule type in specific axon profiles and terminals in the PO.The architecture of CCAP-immunoreactive neurons is discussed with respect to previous morphological studies on the origin and pathways of fibers terminating in the PO.Dedicated to Professor K.E. Wohlfarth-Bottermann, Bonn, on the occasion of his 65th birthday  相似文献   

9.
Immunocytochemistry was performed on the nervous system of Helix by the use of an antibody raised against a myotropic neuropeptide, the catch-relaxing peptide (CARP), isolated from Mytilus edulis. In each ganglion of the central nervous system of Helix pomatia, numerous CARP-immunoreactive cell bodies and a dense immunoreactive fiber system could be observed with a dominancy in the cerebral and pedal ganglia. The majority of the immunoreactive neurons are unipolar, although multipolar neurons also occur. In the neuropil areas, CARP-immunoreactive fibers show extensive arborization, which may indicate a central role of CARP. CARP-immunoreactive elements could be observed in each investigated peripheral nerve and peripheral areas, namely in the intestine, heart, aorta, buccal mass, lips, and foot. However, CARP-immunoreactive cell bodies could only be demonstrated in the intestine and the foot musculature. Thin varicose CARP-immunoreactive fibers were observed over both muscle and gland cells in the different peripheral organs, suggesting a peripheral role of CARP. In vivo CARP injection into the body cavity (10-3, 10-4, 10-5 M) altered the general behavioral state of the animals and induced the relaxation of the musculature of the whole body wall indicating that CARP has a significant role in the regulation of muscle contraction.  相似文献   

10.
We have investigated the distribution of oxytocin/vasopressin (OT/VP) superfamily peptides in the central nervous system (CNS) of the cuttlefish, Sepia officinalis, by using antibodies raised against mammalian OT and VP. Several populations of OT-like and VP-like immunoreactive cell bodies and fibers were widely distributed in cerebral structures involved in learning processes (vertical lobe complex, optic lobes), behavioral communication (peduncle, lateral basal and chromatophore lobes), feeding behavior (inferior frontal, brachial and buccal lobes), sexual activity (dorsal basal, subpedunculate, olfactory lobes), and metabolism (visceral lobes). The two most remarkable findings of this study were the occurrence of OT-like immunoreactivity in many amacrine cells of the vertical lobe and the dense accumulation of VP-like immunoreactive cell bodies in the subpedunculate 1 lobe. No double-immunolabeled cell bodies or fibers were found in any lobes of the CNS, indicating, for the first time in a decapod cephalopod mollusc, the existence of distinct oxytocinergic-like and vasopressinergic-like systems. The widespread distribution of the immunoreactive neurons suggests that these OT-like and VP-like peptides act as neurotransmitters or neuromodulators. This research was supported by grants from the “Région Basse-Normandie” (FRANCE) and the LARC-Neurosciences network (FRANCE).  相似文献   

11.
The distribution of neurotensin-like immunoreactivity was investigated in the central nervous system of the Formosan monkey employing immunohistochemical techniques. Neurotensin-containing cells were found to be widely distributed in the forebrain. The principal densities of neurotensin-like neuronal perikarya were located in the limbic system, the basal ganglion and the cerebral cortex; particularly in the amygdala, the septum, the neostriatum, the claustrum and the insula. The stria terminalis and the preoptic area were also rich in immunostained neurotensin-like neurons. A large number of immunoreactive fibers were observed from the cerebral cortex to the spinal cord in locations such as the median eminence, the arcuate nucleus, the hippocampus, the central gray and the dorsal horn of the spinal cord. We analyzed in detail the distribution of neurotensin-like immunoreactivity in the brain of the Formosan monkey, and compared these results with those obtained in the brain of the rat, Japanese monkey and human. Some possible implications regarding differences in location of this peptide are also briefly discussed.  相似文献   

12.
Rick Hochberg 《Zoomorphology》2007,126(4):245-264
The neuropeptide FMRFamide (Phe–Met–Arg–Phe–NH2) is part of a large and diverse family of peptidergic neurotransmitters present throughout the animal kingdom. To date, no such neuropeptides have been demonstrated in gastrotrichs despite their presence in closely related invertebrates such as nematodes. Here, the FMRFamidergic nervous system of three marine gastrotrichs is investigated with immunofluorescence, CLSM, and 3D computer imaging to gain insight into structure of the cerebral ganglion and test various phylogenetic hypotheses on its organization. Results reveal that FMRFamide-like immunoreactivity (IR) is present throughout the nervous systems of three species: Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Both macrodasyidans possess FMRFamide-like IR in the central, peripheral- and stomatogastric-nervous systems, while FMRFamide-like IR is restricted to the CNS in N. cirritus. In all three species, the cerebral ganglion is dumbbell-shaped and bordered bilaterally by cerebral perikarya: numerous perikarya are present in X. riedli and N. cirritus, while few perikarya are present in T. cf. hyalina. Cerebral perikarya flank the nerve ring neuropil, which contains IR fibers in the supra- and subpharyngeal commissures of both macrodasyidans, but in N. cirritus, only contains IR fibers in the suprapharyngeal commissure. Together, these results confirm the peripharyngeal nature of the gastrotrich cerebral ganglion, but are equivocal on hypotheses of its tripartite structure. Still, the neural organization of gastrotrichs, in particular, the architecture of the cerebral ganglion, is expected to hold valuable information for future assessments of gastrotrich phylogeny, and may yet provide key insights into the evolution of this enigmatic taxon.  相似文献   

13.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

14.
Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida, Scleroperalia) were reconstructed from whole animals by immunohistochemistry and confocal laser scanning microscopy. The F-actin muscular subset, stained with FITC-labeled phalloidin, consists of: (1) eleven pairs (four ventral, one ventrolateral, one dorsolateral, five dorsal) of longitudinal muscles; (2) two types of diagonal muscles (thin fibers throughout the body, and slightly thicker fibers of which seven pairs occur ventrally and two pairs dorsally); (3) evenly spaced thin circular fibers that gird the posterior half of the body, continuing less prominently into the anterior half; and (4) a complex pharyngeal and genital musculature. Dorsoventral muscles are absent. The organization of the FMRFamidergic nervous system shows: (1) a central nervous system with a frontal ganglion and one pair of longitudinal nerves ending in a terminal commissure, and one median ventral nerve; (2) eight to ten unipolar perikarya above, and up to ten bipolar perikarya in front of the brain; (3) a total of five (one unpaired, two paired) longitudinal nerves of the peripheral nervous system with two to four accompanying perikarya; and (4) a buccal ganglion of the stomatogastric nervous system with six to eight perikarya above the pharyngeal bulbus. Our results reveal the musculature and nervous system of Gnathostomula to be more complex than hitherto reported.  相似文献   

15.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

16.
The distribution of proctolin in the central nervous system of the hemipteran bug, Triatoma infestans, was studied by immunohistochemistry using the sensitive avidin‐biotin technique combined with nickel salt intensification of the reaction product. Proctolin was present in cells and fibers of the brain and ganglia. In the brain, protocerebral proctolin‐immunoreactive cell bodies were found in the pars intercerebralis, the optic lobes, and the lateral soma rind. The deutocerebrum showed positive somata in relation to the antennal motor center and the tritocerebrum had intense immunoreactive fibers but few positive cells. Proctolin‐immunoreactive cell bodies of different sizes were observed in the subesophageal ganglion. Large cell bodies were found mainly rostrally and beaded positive processes were present around the ventral border of the esophageal foramen and in the rostrolateral neuropil of this ganglion. Small‐ to medium‐sized positive somata were found in the posterior part of the prothoracic ganglion; some of these cells were sending immunoreactive processes to the central neuropil. The meso‐metathoracic‐abdominal ganglionic mass showed positive cells in all the neuromeres, where some of them were large and had thick immunoreactive granules. The results show that the labeling pattern of proctolin‐like immunoreactivity in Triatoma i. appears to be widespread and unique for its central nervous system. It is suggested that proctolin may serve neuroendocrine, integrative, and motor functions in the brain of T. infestans. J. Morphol. 240:39–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Summary The distribution of the molluscan cardioexcitatory tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) in the brain of the cloudy dogfish, Scyliorhinus torazame, was examined by immunocytochemistry. FMRFamide-like immunoreactivity was demonstrated to occur extensively in various regions of the dogfish brain, except for the corpus cerebelli. Immunoreactive neuronal perikarya were located in the ganglion of the nervus terminalis, the preoptic area, and the hypothalamic periventricular gray matter consisting of the nucleus medius hypothalamicus, the nucleus lateralis tuberis, and the nucleus lobi lateralis. some of the immunoreactive cells in the hypothalamus were identified as cerebrospinal fluid-contacting neurons. The bulk of the immunostained fibers in the nervus terminalis penetrated into the midventral portion of the telencephalon and ran dorsocaudally toward the basal telencephalon and hypothalamus, showing radial projections or ramifications. The labeled fibers were abundant in the midbasal part of the telencephalon and in the hypothalamus, where some fibers were found in loose networks around the cell bodies of the nucleus septi and hypothalamic periventricular nuclei. The fibers demonstrated in the hypothalamus terminated around the vascular wall of the primary capillary plexus of the median eminence or penetrated deeply into the pars intermedia of the hypophysis. These results suggest that, in the dogfish, an FMRFamide-like substance participates in the regulation of adenohypophysial function. This molecule may have a role as a neurotransmitter and/or neuromodulator in the central nervous system.  相似文献   

18.
Summary The distribution of vasotocin-like peptides in the central nervous system of the cartilaginous fish Scyliorhinus canicula was determined by indirect immunofluorescence and peroxidase anti-peroxidase techniques, using a specific antiserum raised in rabbits against synthetic vasotocin. Immunoreactive perikarya were mainly detected in the anterior hypothalamus, within the midcaudal part of the preoptic nucleus. The most rostral positive cell bodies were located in the dorso-lateral parts of the preoptic area, whereas at a more caudal level, they took a ventro-medial position within the deepest layers of the nucleus. Throughout the preoptic region these cells varied in shape according to their location. Occasionally, scattered vasotocin-like immunopositive cells were also identified in the nucleus periventricularis hypothalami. Vasotocin immunoreactivity was detected in numerous varicose nerve fibers of the preopticohypophysial tract. These fibers were seen to course through the medio-basal hypothalamus and caudally, after having passed the hypophysial stem, they reached the neurointermediate lobe of the pituitary. Numerous immunoreactive fibers were also observed within the rostro-medial region of the median eminence. At this level the fibers were in close proximity to the capillary loops. In the preoptic region, some stained cells exibited short processes that appeared to contact non-reactive perikarya. By comparing the distribution of vasotocin- and corticotropin-releasing factor immunoreactivity on adjacent then serial sections, it was revealed that these peptides, in S. canicula, do not coexist in the same perikarya. The present results, are compared with those obtained in other vertebrate groups, and their possible functional implications are discussed.  相似文献   

19.
Corticotropin-releasing factor (CRF) and urocortin (Ucn) are both members of the CRF neuropeptide family. The distribution of Ucn- and CRF-like immunoreactive (ir) structures in the central nervous system of several vertebrate species has been studied, but little is known about that in non-vertebrates. We used a highly specific polyclonal antibody against rat Ucn and CRF to determine and compare the distribution of Ucn- and CRF-like immunoreactivity in the earthworm nervous system. Several Ucn- and CRF-like ir perikarya were described in the cerebral ganglion, subesophageal and ventral cord ganglia. The majority of Ucn-like ir cells were found in the ventral ganglia, whereas CRF-like ir cells were most abundant in the cerebral ganglion. Scattered Ucn- and CRF-like ir varicose fiber terminals were seen in all areas of the earthworm central nervous system. Ucn-like ir cell bodies and fiber terminals were also demonstrated in the pharyngeal wall. No co-localization of Ucn- and CRF-like ir nervous structures were observed. This study provided morphological evidence that Ucn- and CRF-like neurosecretory products exist in the earthworm central nervous system. Furthermore, both the distribution and morphology of Ucn- and CRF-like ir structures were distinct, therefore, it can be hypothesized that these neuropeptides exert different neurendocrine functions in the earthworm nervous system.  相似文献   

20.
Summary The central nervous system (CNS) and the peripheral nervous system (PNS) of the flatworm Microstomum lineare were studied by means of the peroxidase-antiperoxidase (PAP) immunocytochemical method, with the use of antisera to the molluscan cardioactive peptide FMRF-amide. FMRF-amide immunoreactive perikarya and nerve fibres are observed in the CNS and the PNS. In the CNS, immunoreactive perikarya and nerve fibres occur in the brain, in the epithelial lining and the mesenchymal surroundings of the ciliated pits, and positive fibres in the longitudinal nerve cords. In the PNS, immunoreactive fibre bundles with variocosities occur in the pharyngeal nerve ring, in symmetrical groups of perikarya on each side of the pharynx, and in the mouth area. Positive perikarya and meandering nerve fibres appear in the intestinal wall. A few immunoreactive cells and short nerve processes are observed at the male copulatory organ and on both sides of the vagina. Some immunoreactive peptidergic cells do not correspond to cells previously identified by histological techniques for neurosecretory cells. The distribution of immunoreactivity suggests that the FMRF-amide-like substance in CNS and PNS in this worm has roles similar to those of the brain-gut peptides in vertebrates. The status of FMRF-amide-like peptides as representatives of an evolutionarily old family of peptides is confirmed by the positive immunoreaction to anti-FMRF-amide in this primitive microturbellarian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号