首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The glucose-6-phosphatase (G6Pase) activity of cytoplasmic components of spermatocytes and spermatids of the rat was examined by electron microscope cytochemistry using cerium chloride as a capture agent. G6Pase activity, a recognized ER-resident enzyme, was present in all ER cisternae of spermatocytes. In spermatids, while some ER cisternae were G6Pase-reactive, others were negative or only slightly reactive, indicating an unequal distribution of the enzymatic activity throughout the network of ER cisternae in these cells. In spermatocytes, the cis- and trans-elements of the stacks of Golgi saccules were slightly but significantly reactive for G6Pase. In the Golgi apparatus of spermatids, the cis-element, 4 or 5 underlying saccules, as well as one or two thick trans Golgi elements were G6Pase reactive. The G6Pase activity of the various Golgi elements, like that of the ER cisternae was not affected by the pH of the medium and was completely inhibited by Na-vanadate, a known G6Pase inhibitor. Sertoli and Leydig cells, submitted to the same cytochemical conditions, showed complete G6Pase reactivity of their ER; however in Sertoli cells, all Golgi components were consistently negative while in Leydig cells the cis- and trans-elements of the Golgi stacks were slightly reactive, as in spermatocytes. Thus, the G6Pase reactivity of Golgi elements, appeared variable from one cell type to another. The compact juxtanuclear Golgi apparatuses of spermatocytes and spermatids were both associated with numerous G6Pase reactive ER cisternae; some were present at their surface, others crossed their cortices between Golgi stacks and formed elaborate networks in their cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The distribution of glucose-6-phosphatase (G6Pase) activity in the epithelium of the small intestine in mouse embryos (the last 4 days of gestation) was studied by electron microscope cytochemistry and by enzymatic assays. At 16 days, the lead phosphate deposited by the cytochemical reaction is localized on the rough endoplasmic reticulum (RER) and nuclear envelope of very few cells in the duodenum and jejunum. Positive cells are more frequently seen in the upper part of the developing villi. At 17 days of gestation, a tremendous burst in RER differentiation is noticed in all parts of the small intestine and concomitantly glycogen disappears. At 18 days of gestation all the principal cells of the intestinal mucosa show a well differentiated positive RER and the enzyme is also present in the smooth endoplasmic reticulum. Biochemically, G6Pase activity is detected in the proximal 2 thirds of the small intestine at 17 days of gestation and appears at 18 days in the last third. Afterwards the activity increases up until birth. These results suggest (1) that the endoplasmic reticulum differentiates very late in the intestinal mucosa of mouse embryos (2) that the differentiation with respect to G6Pase is asynchronous between the enterocytes, (3) that for a given cell all the cisternae of RER are involved in G6Pase synthesis at the same moment and (4) that the enterocytes of the duodenum differentiate sooner and faster that those of the jejunum and ileum.  相似文献   

4.
A deficiency in microsomal glucose-6-phosphatase (G6Pase) activity causes glycogen storage disease type 1 (GSD-1), a clinically and biochemically heterogeneous group of diseases. It has been suggested that catalysis by G6Pase involves multiple components, with defects in the G6Pase catalytic unit causing GSD-1a and defects in the putative substrate and product translocases causing GSD-1b, 1c, and 1d. However, this model is open to debate. To elucidate the G6Pase system, we have examinedG6PasemRNA expression, G6Pase activity, and glucose 6-phosphate (G6P) transport activity in the murine liver and kidney during normal development. In the liver,G6PasemRNA and enzymatic activity were detected at 18 days gestation and increased markedly at parturition, before leveling off to adult levels. In the kidney,G6PasemRNA and enzymatic activity appeared at 19 days gestation and peaked at weaning, suggesting that kidney G6Pase may have a different metabolic role.In situhybridization analysis demonstrated that, in addition to the liver and kidney, the intestine expressedG6Pase.Despite the expression ofG6Pasein the embryonic liver, microsomal G6P transport activity was not detectable until birth, peaking at about age 4 weeks. Our study strongly supports the multicomponent model for the G6Pase system.  相似文献   

5.
6.
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation. Presented in part at Experimental Biology, April 2006, San Francisco, CA [Kirchner S., Panserat S., Kaushik S. and Ferraris R. FASEB-IUPS-2006 A667.6].  相似文献   

7.
2-Deoxy-2-[(18)F]fluoro-D-glucose ([(18)F] FDG) is used for PET imaging of woodchuck (Marmota monax) model of hepatocellular carcinoma (HCC). The usefulness of FDG on this animal model needs to be validated according to the hypothesized mechanisms. In this study, two key enzymes involved in glucose or [(18)F] FDG metabolism, hexokinase (HK) and glucose-6-phophatase (G6Pase), were examined for their enzymatic activities in the woodchuck models of HCC, which has not been studied before. After dynamic PET scans, woodchuck liver tissue samples were harvested and the homogenate was centrifuged. The supernatant was used for HK activity assay and the microsomal pellet was used for G6Pase assay. HK and G6Pase activities were measured by means of colorimetric reactions via kinetic and end-point assays, respectively. Total protein content was measured by the Bradford method and used to normalize all enzyme activities. HK and G6Pase activities in woodchuck HCC will be used to correlate with in vivo PET imaging data. The woodchuck model of HCC had significantly increased levels of HK in the livers compared to the age-matching healthy woodchuck (7.96 +/- 1.27 vs. 2.74 +/- 0.66 mU/mg protein, P < 0.01) and significantly decreased levels of G6Pase compared to healthy woodchuck (40.35 +/- 19.28 vs. 237.01 +/- 17.32 mU/mg protein, P < 0.01), reflecting an increase in glycolysis. In addition, significant differences were found in HK and G6Pase activities between HCC liver region (HK: 7.96 +/- 1.27 mU/mg protein; G6Pase: 40.35 +/- 19.28 mU/mg protein) and surrounding normal liver region (HK: 2.98 +/- 0.92 mU/mg protein; G6Pase: 140.87 +/- 30.62 mU/mg protein) in the same woodchuck model of HCC (P < 0.01). Our study demonstrated an increased HK activity and a decreased G6Pase activity in liver of the woodchuck models of HCC as compared to normal woodchuck liver.  相似文献   

8.
The objective of the study described here was to analyze in rainbow trout (Oncorhynchus mykiss) the effects of low protein intake on peripheral glucose phosphorylation capacities and gluconeogenic enzymes in kidney and intestine. Fish were food-deprived for 14 days or kept under a low and a high protein intake regime using a pair feeding protocol in order to maintain constant carbohydrate and lipid intakes. We analyzed the effect of protein restriction on (i) hepatic, renal and intestinal fructose-1.6-bisphophatase (FBPase) and glucose-6-phosphatase (G6Pase) enzymes at the molecular and enzymatic levels and (ii) glucose phosphorylation activities (hexokinases) in the liver, peri-visceral adipose tissue, red muscle and white muscle. Irrespective of the nutritional status, we observed the same levels of hexokinase activities in all the tissues studied. Renal G6Pase and FBPase gene expression and activities were not modified among the groups. In contrast, there was increased intestinal FBPase gene expression in fish under a low protein intake and higher G6Pase activities in both groups of fed fish. This result differs from what is observed in rats and suggest a role of intestine in the regulation of postprandial gluconeogenesis in fed trout. In conclusion, our data did not demonstrate any specific effect of low dietary protein intake to either gluconeogenic capacities or glucose phosphorylation capacities in rainbow trout.  相似文献   

9.
A fine control of the blood glucose level is essential to avoid hyper- or hypo-glycemic shocks associated with many metabolic disorders, including diabetes mellitus and type I glycogen storage disease. Between meals, the primary source of blood glucose is gluconeogenesis and glycogenolysis. In the final step of both pathways, glucose-6-phosphate (G6P) is hydrolyzed to glucose by the glucose-6-phosphatase (G6Pase) complex. Because G6Pase (renamed G6Pase-alpha) is primarily expressed only in the liver, kidney, and intestine, it has implied that most other tissues cannot contribute to interprandial blood glucose homeostasis. We demonstrate that a novel, widely expressed G6Pase-related protein, PAP2.8/UGRP, renamed here G6Pase-beta, is an acid-labile, vanadate-sensitive, endoplasmic reticulum-associated phosphohydrolase, like G6Pase-alpha. Both enzymes have the same active site structure, exhibit a similar Km toward G6P, but the Vmax of G6Pase-alpha is approximately 6-fold greater than that of G6Pase-beta. Most importantly, G6Pase-beta couples with the G6P transporter to form an active G6Pase complex that can hydrolyze G6P to glucose. Our findings challenge the current dogma that only liver, kidney, and intestine can contribute to blood glucose homeostasis and explain why type Ia glycogen storage disease patients, lacking a functional liver/kidney/intestine G6Pase complex, are still capable of endogenous glucose production.  相似文献   

10.
For study of the origin of glucose in the aqueous humor, glucose-6-phosphatase (G6Pase) and hexokinase activities, and glycogen, were cytochemically examined in the ciliary body (CB) of rabbit. G6Pase activity was also assayed biochemically. The staining reaction for G6Pase activity was strong in the non-pigmented epithelium (NPE) in the pars plana and tips of ciliary processes in the region containing large ciliary pockets within the pars plicata. NPE cells contained abundant reaction product for G6Pase activity in the endoplasmic reticulum (ER) and nuclear envelope. However, NPE in other regions of the CB and pigmented epithelium (PE) of CB, and other areas surrounding the anterior and (PE) of CB, and other areas surrounding the anterior and posterior chambers, showed weak or no G6Pase staining reaction. Biochemical G6Pase activity in the whole ciliary body was relatively high. Both NPE and PE in the pars plana and the tips showed strong staining reaction for hexokinase activity but no staining for glycogen. Furthermore, NPE cells in the tips bore large aggregates of smooth ER and many Golgi apparati. These suggest that the high G6Pase activity in NPE cells in the pars plana and the tips is related to glucose release into the aqueous humor.  相似文献   

11.
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.  相似文献   

12.
The activity of glucose-6-phosphatase (G6Pase) and fructose-1,6-bisphosphatase (FDPase) was determined in the homogenate of the liver of 69 pig fetuses during the last third of gestation (80th to 114th day), 47 piglets from birth to 4 weeks old (suckling period) and to slaughter pigs. G6Pase is evident in fetal liver at an early date and raises steadily during gestation. In newborn piglets, the enzyme activity increases rapidly during the first hours of life and remains at this high level during the first week of life. Afterwards the enzyme activity returns to birth level, which exists also in pigs at slaughtering. The activity of FDPase is constant during the fetal period. After birth enzyme activity rises at a lower rate than the G6Pase during the first week of life. This level remains constant during the suckling period and increases thereafter until the time of slaughtering of pigs. The role of hormones in the perinatal development of these enzymes is described. Probably, thyroxine causes the prenatal increase of the activity of both the enzymes. The rapid postnatal rise of G6Pase activity may be induced by the high level of hydrocortisone at parturition, and furthermore, glucagon may have a permissive effect.  相似文献   

13.
14.
The cytochemical localization of glucose-6-phosphatase (G6Pase) and its biochemical quantification were studied in isolated and cultured adult rat parenchymal cells. Appropriate technical conditions were chosen to assume adequate ultrastructural preservation and retention of enzyme activity. Isolated hepatocytes separated by collagenase perfusion were shortly fixed in glutaraldehyde and entrapped in a pellet of fibrin. Frozen sections, 50 microns in thickness were incubated for cytochemical demonstration of G6Pase, in a slightly modified Wachstein-Meisel medium. Hepatocytes in culture, fixed for 1 min in glutaraldehyde, were impregnated in a 10% cryoprotective glycerol solution and quickly frozen in liquid nitrogen at -170 degrees C in order to induce penetration of the substrate. In these conditions, a homogeneous distribution of the enzyme was observed in both isolated and cultured cells. The cytochemical reaction appears continuous in the smooth and rough endoplasmic cisternae and in the nuclear envelope. Lead phosphate deposits, although evenly distributed, are reduced in intensity after 48 h culture. Biochemical determinations reveal the presence of a high specific enzymatic activity in isolated cells (108 nmolP/min/mg proteins), which decreases in culture, respectively to 70 and 50% of the original value, after 24 and 48 h culture. G6Pase induction by glucagon was obtained after 48 and 72 h in culture.  相似文献   

15.
The activity of the liver enzymes G6Pase, G6PDH and ME was studied in rats of 2-9 weeks old by histochemical means. In addition, G6PDH and ME activity was quantitatively determined in homogenates. In the 2nd and 3rd week G6Pase is similarly distributed in both sexes: while in the periportal zone high activity is demonstrable, the perivenous zone shows only low activity. After this period a nearly homogeneous distribution pattern becomes evident in all animals. Sex difference occurs after the 6th week: in the livers of male rats the periportal "maximum" is sometimes combined with a second peak in the perivenous area, in females a steep gradient emerges with high activity in the periportal zone and a low one in the perivenous zone. In the first postnatal weeks G6PDH activity is very low in parenchymal cells, but very prominent in Kupffer cells. Around the 5th week there is an increase, predominantly in the perivenous zone of both sexes. While there is again a further decrease demonstrable in male rats, the G6PDH activity of female rats rises to high adult values. This increase seems to be restricted to the perivenous zone. ME can be demonstrated at first in leucocytes. In the course of the 3rd week there is an increase of activity in both sexes: ME is demonstrable in parenchymal cells of the perivenous area and in scattered hepatocytes of the periportal area. In male rats, the perivenous activity is diminished towards the end of the investigation period, in females, however, a high activity remains in the perivenous zone. The data show that in females the activity of NADP dependent enzymes is high in the perivenous zone, so it may be assumed that a lipogenic area is situated around the terminal efferent vessels. Because of the sex difference this area may be hormone-dependent. The lipogenic area is situated opposite to the gluco(neo)genic area which corresponds to the periportal zone.  相似文献   

16.
17.
The purpose of the present study was to demonstrate the presence of glucose-6-phosphatase (G6Pase) in fetal membranes from various gestational ages (20-40 weeks of gestation). Ultrastructural enzyme-histochemical analysis of G6Pase was performed using cerium and lead as capturing agents. Precipitates indicating G6Pase activity were present mainly in the endoplasmic reticulum and partly in the nuclear envelope of chorion laeve trophoblasts, but absent in amniotic epithelial cells. Stringent histochemical control experiments performed ensured specific detection of G6Pase activity. The results indicate that histochemically detectable G6Pase is present in the chorion laeve trophoblasts of human fetal membranes. This enzyme may have some physiological significance in carbohydrate metabolism in human fetal membranes and regulation of amniotic fluid glucose concentration.  相似文献   

18.
The cytochemical demonstration of glucose-6-phosphatase (G6Pase) activity in native cryostat sections fixed with glutaraldehyde through semipermeable membranes is superior to conventional methods with regard to exact localization and lack of inactivation and diffusion of the enzyme, together with simultaneous excellent preservation of the tissue fine structure. In rat liver not only hepatocytes but also many bile duct epithelia and endothelia of arterioles and venules show a marked G6Pase activity in the membranes of the endoplasmic reticulum including the nuclear envelope.  相似文献   

19.
Effect of 5-100 microM epigallocatechin gallate (EGCG) on hepatic glucose 6-phosphatase (G6Pase) system was investigated. EGCG inhibited G6Pase in intact but not in permeabilized rat liver microsomes, suggesting the interference with the transport. However, EGCG did not hinder microsomal glucose 6-phosphate (G6P) uptake. Instead, it increased the accumulation of radioactivity after the addition of [(14)C]G6P, presumably due to a slower release of [(14)C]glucose, the product of luminal hydrolysis. Indeed, EGCG was found to inhibit microsomal glucose efflux. Since G6Pase activity is depressed by glucose in a concentration-dependent manner, we concluded that EGCG inhibits G6Pase through an elevated luminal glucose level.  相似文献   

20.
Summary The cytochemical demonstration of glucose-6-phosphatase (G6Pase) activity in native cryostat sections fixed with glutaraldehyde through semipermeable membranes is superior to conventional methods with regard to exact localization and lack of inactivation and diffusion of the enzyme, together with simultaneous excellent preservation of the tissue fine structure. In rat liver not only hepatocytes but also many bile duct epithelia and endothelia of arterioles and venules show a marked G6Pase activity in the membranes of the endoplasmic reticulum including the nuclear envelope. This work was kindly supported by the Deutsche Forschungsgemeinschaft An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号