首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cDNA encoding rice methionyl-tRNA synthetase was isolated. The protein exhibited a C-terminal polypeptide appended to a classical MetRS domain. This supplementary domain is related to endothelial monocyte activating polypeptide II (EMAPII), a cytokine produced in mammals after cleavage of p43, a component of the multisynthetase complex. It is also related to Arc1p and Trbp111, two tRNA binding proteins. We expressed rice MetRS and a derivative with a deletion of its EMAPII-like domain. Band-shift analysis showed that this extra-domain provides MetRS with non-specific tRNA binding properties. The EMAPII-like domain contributed a 10-fold decrease in K:(M) for tRNA in the aminoacylation reaction catalyzed by the native enzyme, as compared with the C-terminally truncated MetRS. Consequently, the EMAPII domain provides MetRS with a better catalytic efficiency at the free tRNA concentration prevailing in vivo. This domain binds the acceptor minihelix of tRNA(Met) and facilitates its aminoacylation. These results suggest that the EMAPII module could be a relic of an ancient tRNA binding domain that was incorporated into primordial synthetases for aminoacylation of RNA minihelices taken as the ancestor of modern tRNA.  相似文献   

2.
3.
Previous studies showed that valyl-tRNA synthetase of Saccharomyces cerevisiae contains an N-terminal polypeptide extension of 97 residues, which is absent from its bacterial relatives, but is conserved in its mammalian homologues. We showed herein that this appended domain and its human counterpart are both nonspecific tRNA-binding domains (K(d) approximately 0.5 microm). Deletion of the appended domain from the yeast enzyme severely impaired its tRNA binding, aminoacylation, and complementation activities. This N-domain-deleted yeast valyl-tRNA synthetase mutant could be rescued by fusion of the equivalent domain from its human homologue. Moreover, fusion of the N-domain of the yeast enzyme or its human counterpart to Escherichia coli glutaminyl-tRNA synthetase enabled the otherwise "inactive" prokaryotic enzyme to function as a yeast enzyme in vivo. Different from the native yeast enzyme, which showed different affinities toward mixed tRNA populations, the fusion enzyme exhibited similar binding affinities for all yeast tRNAs. These results not only underscore the significance of nonspecific tRNA binding in aminoacylation, but also provide insights into the mechanism of the formation of aminoacyl-tRNAs.  相似文献   

4.
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.  相似文献   

5.
Human glutaminyl-tRNA synthetase (QRS) is one of several mammalian aminoacyl-tRNA synthetases (ARSs) that form a macromolecular protein complex. To understand the mechanism of QRS targeting to the multi-ARS complex, we analyzed both exogenous and endogenous QRSs by immunoprecipitation after overexpression of various Myc-tagged QRS mutants in human embryonic kidney 293 cells. Whereas a deletion mutant containing only the catalytic domain (QRS-C) was targeted to the multi-ARS complex, a mutant QRS containing only the N-terminal appended domain (QRS-N) was not. Deletion mapping showed that the ATP-binding Rossman fold was necessary for targeting of QRS to the multi-ARS complex. Furthermore, exogenous Myc-tagged QRS-C was co-immunoprecipitated with endogenous QRS. Since glutaminylation of tRNA was dramatically increased in cells transfected with the full-length QRS, but not with either QRS-C or QRS-N, both the QRS catalytic domain and the N-terminal appended domain were required for full aminoacylation activity. When QRS-C was overexpressed, arginyl-tRNA synthetase and p43 were released from the multi-ARS complex along with endogenous QRS, suggesting that the N-terminal appendix of QRS is required to keep arginyl-tRNA synthetase and p43 within the complex. Thus, the eukaryote-specific N-terminal appendix of QRS appears to stabilize the association of other components in the multi-ARS complex, whereas the C-terminal catalytic domain is necessary for QRS association with the multi-ARS complex.  相似文献   

6.
Zhang CM  Hou YM 《Biochemistry》2005,44(19):7240-7249
Aminoacyl-tRNA synthetases form complexes with tRNA to catalyze transfer of activated amino acids to the 3' end of tRNA. The tRNA synthetase complexes are roughly divided into the activation and tRNA-binding domains of synthetases, which interact with the acceptor and anticodon ends of tRNAs, respectively. Efficient aminoacylation of tRNA by Escherichia coli cysteinyl-tRNA synthetase (CysRS) requires both domains, although the pathways for the long-range domain-domain communication are not well understood. Previous studies show that dissection of tRNA(Cys) into acceptor and anticodon helices seriously reduces the efficiency of aminoacylation, suggesting that communication requires covalent continuity of the tRNA backbone. Here we tested if communication requires the continuity of the synthetase backbone. Two N-terminal fragments and one C-terminal fragment of E. coli CysRS were generated. While the N-terminal fragments were active in adenylate synthesis, they were severely defective in the catalytic efficiency and specificity of tRNA aminoacylation. Conversely, although the C-terminal fragment was not catalytically active, it was able to bind and discriminate tRNA. However, addition of the C-terminal fragment to an N-terminal fragment in trans did not improve the aminoacylation efficiency of the N-terminal fragment to the level of the full-length enzyme. These results emphasize the importance of covalent continuity of both CysRS and tRNA(Cys) for efficient tRNA aminoacylation, and highlight the energetic costs of constraining the tRNA synthetase complex for domain-domain communication. Importantly, this study also provides new insights into the existence of several natural "split" synthetases that are now identified from genomic sequencing projects.  相似文献   

7.
It has become evident that the process of protein synthesis is performed by many cellular polypeptides acting in concert within the structural confines of protein complexes. In multicellular eukaryotes, one of these assemblies is a multienzyme complex composed of eight proteins that have aminoacyl-tRNA synthetase activities as well as three non-synthetase proteins (p43, p38, and p18) with diverse functions. This study uses electron microscopy and three-dimensional reconstruction to explore the arrangement of proteins and tRNA substrates within this "core" multisynthetase complex. Binding of unfractionated tRNA establishes that these molecules are widely distributed on the exterior of the structure. Binding of gold-labeled tRNA(Leu) places leucyl-tRNA synthetase and the bifunctional glutamyl-/prolyl-tRNA synthetase at the base of this asymmetric "V"-shaped particle. A stable cell line has been produced that incorporates hexahistidine-labeled p43 into the multisynthetase complex. Using a gold-labeled nickel-nitrilotriacetic acid probe, the polypeptides of the p43 dimer have been located along one face of the particle. The results of this and previous studies are combined into an initial three-dimensional working model of the multisynthetase complex. This is the first conceptualization of how the protein constituents and tRNA substrates are arrayed within the structural confines of this multiprotein assembly.  相似文献   

8.
The EMAPII (endothelial monocyte-activating polypeptide II) domain is a tRNA-binding domain associated with several aminoacyl-tRNA synthetases, which becomes an independent domain with inflammatory cytokine activity upon apoptotic cleavage from the p43 component of the multisynthetase complex. It comprises a domain that is highly homologous to bacterial tRNA-binding proteins (Trbp), followed by an extra domain without homology to known proteins. Trbps, which may represent ancient tRNA chaperones, form dimers and bind one tRNA per dimer. In contrast, EMAPII domains are monomers. Here we report the crystal structure at 1.14 Angstroms of human EMAPII. The structure reveals that the Trbp-like domain, which forms an oligonucleotide-binding (OB) fold, is related by degenerate 2-fold symmetry to the extra-domain. The pseudo-axis coincides with the dyad axis of bacterial TtCsaA, a Trbp whose structure was solved recently. The interdomain interface in EMAPII mimics the intersubunit interface in TtCsaA, and may thus generate a novel OB-fold-based tRNA-binding site. The low sequence homology between the extra domain of EMAPII and either its own OB fold or that of Trbps suggests that dimer mimicry originated from convergent evolution rather than gene duplication.  相似文献   

9.
M Kaminska  V Shalak  M Mirande 《Biochemistry》2001,40(47):14309-14316
An ancillary RNA-binding domain is appended to the C-terminus of human methionyl-tRNA synthetase. It comprises a helix-turn-helix (HTH) motif related to the repeated units of the linker region of bifunctional glutamyl-prolyl-tRNA synthetase, and a specific C-terminal KGKKKK lysine-rich cluster (LRC). Here we show by gel retardation and tRNA aminoacylation experiments that these two regions are important for tRNA binding. However, the two pieces of this bipartite RNA-binding domain are functionally distinct. Analysis of MetRS mutant enzymes revealed that the HTH motif is more specifically endowed with a tRNA-sequestering activity and confers on MetRS a rate-limiting dissociation of aminoacylated tRNA. Elongation factor EF-1alpha enhanced the turnover in the aminoacylation reaction. In contrast, the LRC region is most probably involved in accelerating the association step of deacylated tRNA. These two nonredundant RNA-binding motifs strengthen tRNA binding by the synthetase. The native form of MetRS, containing the C-terminal RNA-binding domain, behaves as a processive enzyme; release of the reaction product is not spontaneous, but may be synchronized with the subsequent step of the tRNA cycle through EF-1alpha-assisted dissociation of Met-tRNA(Met). Therefore, the eukaryotic-specific C-domain of human MetRS may have a dual function. It may ensure an efficient capture of tRNA(Met) under conditions of suboptimal deacylated tRNA concentration prevailing in vivo, and may instigate direct transfer of aminoacylated tRNA from the synthetase to elongation factor EF-1alpha.  相似文献   

10.
Geslain R  Bey G  Cavarelli J  Eriani G 《Biochemistry》2003,42(51):15092-15101
The aim of this work was to characterize crucial amino acids for the aminoacylation of tRNA(Arg) by yeast arginyl-tRNA synthetase. Alanine mutagenesis was used to probe all the side chain mediated interactions that occur between tRNA(Arg2)(ICG) and ArgRS. The effects of the substitutions were analyzed in vivo in an ArgRS-knockout strain and in vitro by measuring the aminoacylation efficiencies for two distinct tRNA(Arg) isoacceptors. Nine mutants that generate lethal phenotypes were identified, suggesting that only a limited set of side chain mediated interactions is essential for tRNA recognition. The majority of the lethal mutants was mapped to the anticodon binding domain of ArgRS, a helix bundle that is characteristic for class Ia synthetases. The alanine mutations induce drastic decreases in the tRNA charging rates, which is correlated with a loss in affinity in the catalytic site for ATP. One of those lethal mutations corresponds to an Arg residue that is strictly conserved in all class Ia synthetases. In the known crystallographic structures of complexes of tRNAs and class Ia synthetases, this invariant Arg residue stabilizes the idiosyncratic conformation of the anticodon loop. This paper also highlights the crucial role of the tRNA and enzyme plasticity upon binding. Divalent ions are also shown to contribute to the induced fit process as they may stabilize the local tRNA-enzyme interface. Furthermore, one lethal phenotype can be reverted in the presence of high Mg(2+) concentrations. In contrast with the bacterial system, in yeast arginyl-tRNA synthetase, no lethal mutation has been found in the ArgRS specific domain recognizing the Dhu-loop of the tRNA(Arg). Mutations in this domain have no effects on tRNA(Arg) aminoacylation, thus confirming that Saccharomyces cerevisiae and other fungi belong to a distinct class of ArgRS.  相似文献   

11.
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).  相似文献   

12.
Francin M  Mirande M 《Biochemistry》2006,45(33):10153-10160
Mammalian lysyl-tRNA synthetase (LysRS) has an N-terminal polypeptide chain extension appended to a prokaryotic-like synthetase domain. This extension, termed a tRNA-interacting factor (tIF), possesses a RNA-binding motif [KxxxK(K/R)xxK] that binds nonspecifically the acceptor TPsiC stem-loop domain of tRNA and provides a potent tRNA binding capacity to this enzyme. Consequently, native LysRS aminoacylates a RNA minihelix mimicking the amino acid acceptor stem-loop domain of tRNA(3)(Lys). Here, examination of minihelix recognition showed that mammalian LysRS aminoacylates RNA minihelices without specificity of sequence, revealing that none of the nucleotides from the acceptor TPsiC stem-loop domain are essential determinants of tRNA(Lys) acceptor identity. To test whether the tIF domain reduces the specificity of the synthetase with regard to complete tRNA molecules, aminoacylation of wild-type and mutant noncognate tRNAs by wild-type or N-terminally truncated LysRS was examined. The presence of the UUU anticodon of tRNA(Lys) appeared to be necessary and sufficient to transform yeast tRNA(Asp) or tRNA(i)(Met) into potent lysine acceptor tRNAs. Thus, nonspecific RNA-protein interactions between the acceptor stem of tRNA and the tIF domain do not relax the tRNA specificity of mammalian LysRS. The possibility that interaction of the full-length cognate tRNA with the synthetase is required to induce the catalytic center of the enzyme into a productive conformation is discussed.  相似文献   

13.
In vitro conversion of a methionine to a glutamine-acceptor tRNA   总被引:13,自引:0,他引:13  
L H Schulman  H Pelka 《Biochemistry》1985,24(25):7309-7314
A derivative of Escherichia coli tRNAfMet containing an altered anticodon sequence, CUA, has been enzymatically synthesized in vitro. The variant tRNA was prepared by excision of the normal anticodon, CAU, in a limited digestion of intact tRNAfMet with RNase A, followed by insertion of the CUA sequence into the anticodon loop with T4 RNA ligase and polynucleotide kinase. The altered methionine tRNA showed a large enhancement in the rate of aminoacylation by glutaminyl-tRNA synthetase and a large decrease in the rate of aminoacylation by methionyl-tRNA synthetase. Measurement of kinetic parameters for the charging reaction by the cognate and noncognate enzymes revealed that the modified tRNA is a better acceptor for glutamine than for methionine. The rate of mischarging is similar to that previously reported for a tryptophan amber suppressor tRNA containing the anticodon CUA, su+7 tRNATrp, which is aminoacylated with glutamine both in vivo and in vitro [Yaniv, M., Folk, W. R., Berg, P., & Soll, L. (1974) J. Mol. Biol. 86, 245-260; Yarus, M., Knowlton, R. E., & Soll, L. (1977) in Nucleic Acid-Protein Recognition (Vogel, H., Ed.) pp 391-408, Academic Press, New York]. The present results provide additional evidence that the specificity of aminoacylation by glutaminyl-tRNA synthetase is sensitive to small changes in the nucleotide sequence of noncognate tRNAs and that uridine in the middle position of the anticodon is involved in the recognition of tRNA substrates by this enzyme.  相似文献   

14.
Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination.  相似文献   

15.
Large amounts of glycyl-tRNA synthetase were purified from the posterior silk glands of Bombyx mori. The synthetase was estimated to be a dimer with a molecular weight of 180,000. When the enzyme solution was diluted, the dimer dissociated into monomers which were inactive in tRNA aminoacylation. The aminoacylation was investigated with two isoaccepting tRNAsGly isolated from the posterior silk glands. Transfer RNA1Gly was aminoacylated 2-fold faster than tRNA2Gly. Transfer RNA-binding experiments revealed that tRNA1Gly binds with the enzyme in a molar ratio of 2:1, whereas tRNA2Gly formed a 1:1 complex with the enzyme. Based on these experimental results, we proposed that the Bombyx mori glycyl-tRNA synthetase has two active sites for tRNA aminoacylation and that the number of tRNA molecules bound on the synthetase closely correlates with the velocity of aminoacylation.  相似文献   

16.
Endothelial monocyte activating polypeptide II (EMAPII) is a cytokine that is specifically induced by apoptosis. Its precursor (pro-EMAPII) has been suggested to be identical to p43, which is associated with the multi-tRNA synthetase complex. Herein, we have demonstrated that the N-terminal domain of pro-EMAPII interacts with the N-terminal extension of human cytoplasmic arginyl-tRNA synthetase (RRS) using genetic and immunoprecipitation analyses. Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone. The N-terminal extension of RRS was not required for enzyme activity but did mediate activity stimulation by pro-EMAPII. Pro-EMAPII reduced the apparent Km of RRS to tRNA, whereas the kcat value remained unchanged. Therefore, the precursor of EMAPII is a multi-functional protein that assists aminoacylation in normal cells and releases the functional cytokine upon apoptosis.  相似文献   

17.
Guigou L  Mirande M 《Biochemistry》2005,44(50):16540-16548
Arginyl-tRNA synthetase (ArgRS) catalyzes formation of arginyl-adenylate in a tRNA-dependent reaction. Previous studies have revealed that conformational changes occur upon tRNA binding. In this study, we analyzed the sequence and structural features of tRNA that are essential to activate the catalytic center of mammalian arginyl-tRNA synthetase. Here, tRNA variants with different activator potential are presented. The three regions that are crucial for activation of ArgRS are the terminal adenosine, the D-loop, and the anticodon stem-loop of tRNA. The Add-1 N-terminal domain of ArgRS, which has the very unique property among aminoacyl-tRNA synthetases to interact with the D-loop in the corner of the convex side of tRNA, has an essential role in anchoring tRNA and participating in tRNA-induced amino acid activation. The results suggest that locking the acceptor extremity, the anticodon loop, and the D-loop of tRNA on the catalytic, anticodon-binding, and Add-1 domains of ArgRS also requires some flexibility of the tRNA molecule, provided by G:U base pairs, to achieve the productive conformation of the active site of the enzyme by induced fit.  相似文献   

18.
Yeast Arc1p, human p43 and plant methionyl-tRNA synthetase (MetRS) possess an EMAPII-like domain capable of non-specific interactions with tRNA. Arc1p interacts with MetRS (MES1) and GluRS and operates as a tRNA-interacting factor (tIF) in trans of these two synthetases. In plant MetRS, the EMAPII-like domain is fused to the catalytic core of the synthetase and acts as a cis-acting tIF for aminoacylation. We observed that the catalytic core of plant MetRS expressed from a centromeric plasmid cannot complement a yeast arc1(-) mes1(-) strain. Overexpression of the mutant enzyme from a high-copy number plasmid restored cell growth, suggesting that deletion of its C-terminal tIF domain was responsible for the poor aminoacylation efficiency of that enzyme in vivo. Accordingly, expression of full-size plant MetRS from a centromeric plasmid, but also of fusion proteins between its catalytic core and the EMAPII-like domains of yeast Arc1p or of human p43 restored cell viability. These data showed that homologous tIF domains from different origins are interchangeable and may act indifferently in trans or in cis of the catalytic domain of a synthetase. Unexpectedly, co-expression of Arc1p with the catalytic core of plant MetRS restored cell viability as well, even though Arc1p did not associate with plant MetRS. Because Arc1p also interacts with yeast GluRS, restoration of cell growth could be due at least in part to its role of cofactor for that enzyme. However, co-expression of human p43, a tIF that did not associate with plant MetRS or with yeast GluRS and MetRS, also restored cell viability of a yeast strain that expressed the catalytic core of plant MetRS. These results show that p43 and Arc1p are able to facilitate tRNA aminoacylation in vivo even if they do not interact physically with the synthetases. We propose that p43/Arc1p may be involved in sequestering tRNAs in the cytoplasm of eukaryotic cells, thereby increasing their availability for protein synthesis.  相似文献   

19.
Lysyl-tRNA synthetase from higher eukaryotes possesses a lysine-rich N-terminal polypeptide extension appended to a classical prokaryotic-like LysRS domain. Band shift analysis showed that this extra domain provides LysRS with nonspecific tRNA binding properties. A N-terminally truncated derivative of LysRS, LysRS-DeltaN, displayed a 100-fold lower apparent affinity for tRNA(3)Lys and a 3-fold increase in K(m) for tRNA(3)Lys in the aminoacylation reaction, as compared with the native enzyme. The isolated N-domain of LysRS also displayed weak affinity for tRNA, suggesting that the catalytic and N-domains of LysRS act synergistically to provide a high affinity binding site for tRNA. A more detailed analysis revealed that LysRS binds and specifically aminoacylates an RNA minihelix mimicking the amino acid acceptor stem-loop structure of tRNA(3)Lys, whereas LysRS-DeltaN did not. As a consequence, merging an additional RNA-binding domain into a bacterial-like LysRS increases the catalytic efficiency of the enzyme, especially at the low concentration of deacylated tRNA prevailing in vivo. Our results provide new insights into tRNA(Lys) channeling in eukaryotic cells and shed new light on the possible requirement of native LysRS for triggering tRNA(3)Lys packaging into human immunodeficiency virus, type 1 viral particles.  相似文献   

20.
Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号