首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Owing to global climate change, the global resurgence of vector‐borne infectious diseases and their potential to inflict widespread casualties among human populations has emerged as a pivotal burden on public health systems. In this study, the prevalence of flaviviral diseases transmitted by mosquitoes, and their target vector diversity, abundance, and distribution was investigated to enable the mapping of hotspots for these diseases. For the surveillance of the vector mosquitoes carrying flaviviruses during April to November 2015, female mosquitoes were collected to study whether they carried pathogens from abroad at seven locations in Incheon Metropolitan City (Incheon) as a typical urban area and Hwaseong‐si (= city, Hwaseong) of Gyeonggi‐do (= province) as a rural area. A total of 15 species belonging to seven genera (29,102 female mosquitoes) were collected with black‐light and BG‐Sentinel? traps at a collection rate of 260 per trap/night from whole collection locations. The most collected mosquito species in Incheon were Aedes vexans nipponii (species ratio (SR), 29.9%) and the Culex pipiens complex (SR, 28.8%), followed by Anopheles sinensis s.l. (SR, 27.9%) and Ochlerotatus koreicus (SR, 7.1%). From the results of viral RNA detection, five flaviviruses were found in 20,981 individuals (excluding An. sinensis; 696 pools) in the Cx. pipiens complex and Ae. vexans nipponii. Three Japanese encephalitis virus (JEV)‐positive pools were from the Cx. pipiens complex, a Chaoyang virus pool was found from Ae. vexans nipponii, and the remaining unidentified flavivirus pool was from Cx. pipiens. The three JEV‐positive pools were phylogenetically grouped as genotype V. The results of our study demonstrate that enhanced monitoring and long‐term surveillance of these vector viruses are of great public health importance.  相似文献   

2.
Outbreaks of vector‐borne diseases are dramatically increasing because of climate change, consequently increasing the importance of surveillance of endemic disease vectors. In this study, we surveyed chigger mites, vectors for Orientia tsutsugamushi—the bacteria that causes Tsutsugamushi disease—, and their rodent hosts in Gimcheon, central South Korea, in 2015–2018. A total of 225 rodents were collected, with trap rate and percentage of rodents infected by chigger mites of 9.8 and 72.4%, respectively. Six species of rodents from five genera were collected, the most common rodent being Apodemus agrarius (n = 153, infection rate = 90.8%). The highest number of rodents was collected in spring (trap rate = 10.3), but the rate of infected rodents was higher in fall (81.5%) than in spring (61.3%). Trap rate was highest for bank near waterway (17.9), but the chigger index (CI) was highest in hill (224.1). A total of 20,534 (CI 126.0) chigger mite individuals from 10 species and three genera were found on the collected rodents. The most common species was Leptotrombidium pallidum (n = 7,982, 83.6%, CI 49.0), followed by L. palpale and L. scutellare. Chigger mites were most frequent at banks near waterway (n = 11,093, CI 152.0) and hill (n = 2,017, CI 224.1). To detect O. tsutsugamushi in chigger mites, 450 pools of chigger mites (n = 10,991) were analyzed; 24 pools were positive—23 of A. agrarius, the most frequently collected species in South Korea, 1 of Micromys minutus—and the minimum positive rate (MPR) was 0.22. The detected strain types included Boryong (dominant in all years, seasons, and habitats), Jecheon, 07–489, and IIOC1202.  相似文献   

3.
The Northern Territory (NT) of Australia is currently free of the dengue mosquito Aedes (Stegomyia) aegypti (L). However, on 17 February 2004, two Ae. aegypti adults were captured in two routine CO2‐baited encephalitis virus surveillance traps in Tennant Creek, located 990 km south of Darwin in the NT. The detection triggered an immediate survey and control response undertaken by the NT Department of Health and Community Services, followed by a Commonwealth of Australia‐funded Ae. aegypti elimination program. This report details the methods and results of the detection and subsequent elimination activities that were carried out between 2004 and 2006, returning the NT to its dengue vector‐free status. There have been very few successful Ae. aegypti elimination programs in the world. This purposeful mosquito elimination for Australia was officially declared on 5 April 2006.  相似文献   

4.
The Yunnan red‐backed vole Eothenomys miletus (Rodentia: Cricetidae) is an endemic rodent species and reservoir host of zoonoses in southwest China. Based on a large host sample (2463 voles collected from 39 localities between 2001 and 2013), a general analysis of four categories of ectoparasite (fleas, sucking lice, chigger mites and gamasid mites) on E. miletus across its entire range of distribution was made. This analysis identified a total of 71 895 ectoparasites belonging to 320 species (30 species of flea, 9 of sucking louse, 106 of gamasid mite and 175 of chigger mite) with a high prevalence (87%), mean abundance (29.19) and mean intensity (33.69). Of the 18 vector species of zoonoses found on E. miletus, the flea Ctenophthalmus quadratus (Siphonaptera: Hystrichopsyllidae) and chigger mite Leptotrombidium scutellare (Trombidiformes: Trombiculidae) were the dominant species; these are the main vectors of zoonoses in China. All of the dominant parasite species showed an aggregated distribution pattern. Male voles harboured more species of parasite than females. Chigger mites represented the most abundant species group on voles and their prevalence was positively correlated with mean abundance (r = 0.73; P < 0.05). As a single rodent species, E. miletus has a high potential to harbour abundant ectoparasites with high species diversity and high rates of infestation. The sex of the vole affects ectoparasite infestation.  相似文献   

5.
In 2016, modified CO2‐baited encephalitis virus surveillance (EVS) traps were evaluated for flavivirus surveillance in the Northern Territory, Australia. The traps were fitted with honey‐soaked nucleic acid preservation cards (FTATM) for mosquitoes to expectorate virus while feeding on the cards. Cards were tested for the presence of selected arboviruses, with two cards testing positive for Kunjin virus and Alfuy, while sentinel chickens tested in parallel also showed Kunjin virus activity at the same time. The results from the cards and vector mosquito feeding rates indicate that CO2‐baited EVS traps coupled with honey‐baited FTATM cards are an effective tool for broad‐scale arbovirus surveillance.  相似文献   

6.
Aim Ixodes scapularis is the most important vector of human tick‐borne pathogens in the United States, which include the agents of Lyme disease, human babesiosis and human anaplasmosis, among others. The density of host‐seeking I. scapularis nymphs is an important component of human risk for acquiring Borrelia burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and field sampling data to generate a predictive map of the density of host‐seeking I. scapularis nymphs that can be used by the public, physicians and public health agencies to assist with the diagnosis and reporting of disease, and to better target disease prevention and control efforts. Location Eastern United States of America. Methods We sampled host‐seeking I. scapularis nymphs in 304 locations uniformly distributed east of the 100th meridian between 2004 and 2006. Between May and September, 1000 m2 were drag sampled three to six times per site. We developed a zero‐inflated negative binomial model to predict the density of host‐seeking I. scapularis nymphs based on altitude, interpolated weather station and remotely sensed data. Results Variables that had the strongest relationship with nymphal density were altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest fragmentation and soil texture were not predictive. The best‐fit model identified two main foci – the north‐east and upper Midwest – and predicted the presence and absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82% specificity. Areas of concordance and discordance with previous studies were discussed. Areas with high predicted but low observed densities of host‐seeking nymphs were identified as potential expansion fronts. Main conclusions This model is unique in its extensive and unbiased field sampling effort, allowing for an accurate delineation of the density of host‐seeking I. scapularis nymphs, an important component of human risk of infection for B. burgdorferi and other I. scapularis‐borne pathogens.  相似文献   

7.
The spread of vector‐borne pathogens depends on a complex set of interactions among pathogen, vector, and host. In single‐host systems, pathogens can induce changes in vector preferences for infected vs. healthy hosts. Yet it is unclear if pathogens also induce changes in vector preference among host species, and how changes in vector behaviour alter the ecological dynamics of disease spread. Here, we couple multi‐host preference experiments with a novel model of vector preference general to both single and multi‐host communities. We show that viruliferous aphids exhibit strong preferences for healthy and long‐lived hosts. Coupling experimental results with modelling to account for preference leads to a strong decrease in overall pathogen spread through multi‐host communities due to non‐random sorting of viruliferous vectors between preferred and non‐preferred host species. Our results demonstrate the importance of the interplay between vector behaviour and host diversity as a key mechanism in the spread of vectored‐diseases.  相似文献   

8.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

9.
The increasing rate of biological invasions resulting from human transport or human‐mediated changes to the environment has had devastating ecological and public health consequences. The kissing bug, Triatoma infestans, has dispersed through the Peruvian city of Arequipa. The biological invasion of this insect has resulted in a public health crisis, putting thousands of residents of this city at risk of infection by Trypanosoma cruzi and subsequent development of Chagas disease. Here, we show that populations of Tria. infestans in geographically distinct districts within and around this urban centre share a common recent evolutionary history although current gene flow is restricted even between proximal sites. The population structure among the Tria. infestans in different districts is not correlated with the geographical distance between districts. These data suggest that migration among the districts is mediated by factors beyond the short‐range migratory capabilities of Tria. infestans and that human movement has played a significant role in the structuring of the Tria. infestans population in the region. Rapid urbanization across southern South America will continue to create suitable environments for Tria. infestans, and knowledge of its urban dispersal patterns may play a fundamental role in mitigating human disease risk.  相似文献   

10.
11.
In the article by R. Penjweini, M. M. Kim et al. (doi: 10.1002/jbio.201600121 ), published in J. Biophotonics 9, 1344–1354 (2016), the constants C01, C02, b1, and b2 determined from fitting the fluorescence single value decomposition (SVD) for phantoms with different optical properties and the corresponding Figure 2(a) are not correct. This erratum is published to correct the Section 2.3 and Figure 2(a).  相似文献   

12.
Adult mosquito surveillance was conducted from 2013 through 2014 at four cattle sheds, a wild bird refuge, and two residential areas located in Gyeongnam Province in the Republic of Korea. Adult mosquitoes were collected in black light traps from April 1, through November 30. Mosquito surveillance was conducted to figure out population densities of vector mosquitoes, possibly invaded mosquitoes and identify various virus infections at the selected sites. A total of 107,466 females comprising 14 species and 7 genera were collected from 2013 to 2014. The most common species collected were Culex tritaeniorhynchus Giles (63.8%), Anopheles sinensis s.l. (18.9%), Aedes vexans nipponii (Theobald) (7.7%), and Culex pipiens Coquillett (5.1%). Trap indices (TIs) varied widely for species over their range, due to geographical distribution and degree of association with rural and urban communities . The most collected An. sinensis s.l. and Cx. tritaeniorhynchus appeared at a cow shed in Hapcheon (TI 347.5) and a pigsty in Daejeo‐1‐dong, Busan (TI 1,040.8), respectively, due in part to their situation near breeding sites such as rice paddies. The bi‐weekly population densities for mosquito species were variable for each of the years, apparently as a result of variable annual weather conditions. None of the mosquito species collected tested for the flavivirus including Japanese Encephalitis Virus, West Nile Virus, Dengue Virus, and Zika Virus infections by polymerase chain reaction (PCR) assay were positive.  相似文献   

13.
An ectoparasiticide combining three active ingredients [dinotefuran, permethrin and pyriproxyfen (DPP)] was used in mice in an experiment designed to evaluate its anti‐feeding and insecticidal efficacy against Stegomyia albopicta (= Aedes albopictus) (Diptera: Culicidae) mosquitoes. Twenty‐two adult mice were randomly allocated into two groups consisting of an untreated control group and a DPP‐treated group. Mice were exposed individually for 1 h to a mean ± standard deviation of 27 ± 2 starved female mosquitoes on days 1, 7, 14, 21 and 28 post‐treatment. At the end of the exposure (1 h), mosquitoes were assessed for immediate survival and engorgement status. Additionally, live mosquitoes in both groups were incubated separately and observed for mortality at 24 h after the end of the exposure. The anti‐feeding efficacy of DPP after the 1‐h exposure period was 99.2, 100, 98.0, 89.3 and 87.4% at 1, 7, 14, 21 and 28 days, respectively. Levels of insecticidal efficacy evaluated at 1 h and 24 h after exposure on days 1, 7, 14, 21 and 28 were 36.7, 28.9, 30.8, 23.1 and 11.9%, and 68.4, 45.0, 43.3, 37.9 and 19.9%, respectively. Based on the mouse model, the present study demonstrates that the DPP combination has significant anti‐feeding and insecticidal efficacy against S. albopicta for at least 4 weeks.  相似文献   

14.
A simple, rapid chemiluminescence (CL) method was described for the determination of piroxicam, a commonly used analgesic agent drug. A strong CL signal was detected when cerium(IV) sulphate was injected into tris‐(4,7‐diphenyl‐1,10‐phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–piroxicam solution. The CL signal was proportional to the concentration of piroxicam in the range 2.8 × 10–8–1.2 × 10–5 mol/L. The detection limit was 2 × 10–8 mol/L and the relative standard deviation (RSD) was 3.7% (c = 7.0 × 10–7 mol/L piroxicam; n = 11). The proposed method was applied to the determination of piroxicam in pharmaceutical preparations in capsules, spiked serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A novel spectrofluorometric method for the determination of furosemide (FUR) is described. The method is based on enhancement of fluorescence emission of FUR in the presence of zinc (II) complexes of 1,4‐bis(imidazol‐1‐ylmethyl)benzene. Under optimum conditions, the enhanced fluorescence intensity is linearly related to the concentration of FUR. The proposed method has been successfully applied to the determination of FUR in pharmaceutical preparations. The possible mechanism of this reaction is discussed briefly based on data from fluorescence spectroscopy, UV–vis absorption and infrared spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

17.
18.
A simple, green, and direct three‐component condensation of acetophenone, aromatic aldehydes with 3‐oxo‐N‐phenylbutanamide (acetoacetanilide) to generate some novel (1S,6R)/(1R,6S)‐2‐oxo‐N,4,6‐triarylcyclohex‐3‐enecarboxamide derivatives was carried out over K2CO3 (10 mol%) with high efficiency in water/ethanol as green solvent at room temperature. This protocol proceeded via Claisen–Schmidt condensation and Michael addition. The present methodology offers several advantages, such as short reaction time, high yield, more readily available and inexpensive materials, more environmentally friendly, no need for column chromatography, simple work‐up procedure, and the absence of volatile and hazardous organic solvents.  相似文献   

19.
Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of West Nile virus (WNV) in the U.S.A., was first detected on the Galápagos Islands (Ecuador) in the 1980s. However, little is known of its ecology, distribution or capacity for arbovirus transmission in the Galápagos. We characterize details of lifecycle (including gonotrophic period), temporal abundance, spatial distribution, vector competence and host‐feeding behaviour. Culex quinquefasciatus was detected on five islands of the Galápagos during 2006–2011. A period of 7–14 days was required for egg–adult emergence; water salinity above 5 ppt was demonstrated to hinder larval development. Blood‐meal analysis indicated feeding on reptiles, birds and mammals. Assessment of WNV vector competency of Galápagos C. quinquefasciatus showed a median infectious dose of 7.41 log10 plaque‐forming units per millilitre and evidence of vertical transmission (minimal filial infection rate of 3.7 per 1000 progeny). The distribution of C. quinquefasciatus across the archipelago could be limited by salt intolerance, and its abundance constrained by high temperatures. Feeding behaviour indicates potential to act as a bridge vector for transmission of pathogens across multiple taxa. Vertical transmission is a potential persistence mechanism for WNV on Galápagos. Together, our results can be used for epidemiological assessments of WNV and target vector control, should this pathogen reach the Galápagos Islands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号