首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
2.
3.
4.
5.
Potato is a species commonly cultivated in temperate areas where the growing season may be interrupted by frosts, resulting in loss of yield. Cultivated potato, Solanum tuberosum, is freezing sensitive, but it has several freezing-tolerant wild potato relatives, one of which is S. commersonii. Our study was aimed to resolve the relationship between enhanced freezing tolerance, acclimation capacity and capacity to tolerate active oxygen species. To be able to characterize freezing tolerant ideotypes, a potato population (S1), which segregates in freezing tolerance, acclimation capacity and capacity to tolerate superoxide radicals, was produced by selfing a somatic hybrid between a freezing-tolerant Solanum commersonii (LT50=-4.6°C) and -sensitive S. tuberosum (LT50=-3.0°C). The distribution of non-acclimated freezing tolerance (NA-freezing tolerance) of the S1 population varied between the parental lines and we were able to identify genotypes, having significantly high or low NA-freezing tolerance. When a population of 25 genotypes was tested both for NA-freezing and paraquat (PQ) tolerance, no correlation was found between these two traits (R = 0.02). However, the most NA-freezing tolerant genotypes were also among the most PQ tolerant plants. Simultaneously, one of the NA-freezing sensitive genotypes (2022) (LT50=-3.0°C) was observed to be PQ tolerant. These conflicting results may reflect a significant, but not obligatory, role of superoxide scavenging mechanisms in the NA-freezing tolerance of S. commersonii. The freezing tolerance after cold acclimation (CA-freezing tolerance) and the acclimation capacity (AC) was measured after acclimation for 7 days at 4/2°C. Lack of correlation between NA-freezing tolerance and AC (R =-0.05) in the S1 population points to independent genetic control of NA-freezing tolerance and AC in Solanum sp. Increased freezing tolerance after cold acclimation was clearly related to PQ tolerance of all S1 genotypes, especially those having good acclimation capacity. The rapid loss of improved PQ tolerance under deacclimation conditions confirmed the close relationship between the process of cold acclimation and enhanced PQ tolerance. Here, we report an increased PQ tolerance in cold-acclimated plants compared to non-acclimated controls. However, we concluded that high PQ tolerance is not a good indicator of actual freezing tolerance and should not be used as a selectable marker for the identification of a freezing-tolerant genotype.  相似文献   

6.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

7.
8.
Cardiomyocyte cell death is a major contributing factor to various cardiovascular diseases and is therefore an important target for the design of therapeutic strategies. More recently, stem cell therapies, such as transplantation of embryonic or induced pluripotent stem (iPS) cell‐derived cardiomyocytes, have emerged as a promising alternative therapeutic avenue to treating cardiovascular diseases. Nevertheless, survival of these introduced cells is a serious issue that must be solved before clinical application. We and others have identified a small non‐coding RNA, microRNA‐24 (miR‐24), as a pro‐survival molecule that inhibits the apoptosis of cardiomyocytes. However, these earlier studies delivered mimics or inhibitors of miR‐24 via viral transduction or chemical transfection, where the observed protective role of miR‐24 in cardiomyocytes might have partially resulted from its effect on non‐cardiomyocyte cells. To elucidate the cardiomyocyte‐specific effects of miR‐24 when overexpressed, we developed a genetic model by generating a transgenic mouse line, where miR‐24 expression is driven by the cardiac‐specific Myh6 promoter. The Myh6‐miR‐24 transgenic mice did not exhibit apparent difference from their wild‐type littermates under normal physiological conditions. However, when the mice were subject to myocardial infarction (MI), the transgenic mice exhibited decreased cardiomyocyte apoptosis, improved cardiac function and reduced scar size post‐MI compared to their wild‐type littermates. Interestingly, the protective effects observed in our transgenic mice were smaller than those from earlier reported approaches as well as our parallelly performed non‐genetic approach, raising the possibility that non‐genetic approaches of introducing miR‐24 might have been mediated via other cell types than cardiomyocytes, leading to a more dramatic phenotype. In conclusion, our study for the first time directly tests the cardiomyocyte‐specific role of miR‐24 in the adult heart, and may provide insight to strategy design when considering miRNA‐based therapies for cardiovascular diseases.  相似文献   

9.
10.
  • Saccharum spontaneum L. is one of the most important germplasm resources for modern sugarcane breeding. Exploring the cold tolerance of S. spontaneum clones with different ploidy levels and screening for cold‐tolerant material can be helpful in parent selection for breeding cold‐tolerant sugarcane.
  • Morphological indices, leaf ultrastructure and physiological indices were used to evaluate the cold tolerance of 36 S. spontaneum clones with different ploidy levels (2n = 40, 48, 54, 60, 64, 78, 80, 88, 92 and 96).
  • The morphological indices of S. spontaneum clones with different ploidy levels were positively correlated with ploidy. Under low‐temperature stress, the chloroplast and mitochondrial structures of the clones with high ploidy were more severely damaged than were those of clones with low ploidy. A comprehensive evaluation of the physiological indices showed that the 36 S. spontaneum clones could be divided into four categories: strongly cold tolerant, cold tolerant, moderately cold tolerant and cold sensitive. Correlation analysis of the morphological indices and cold tolerance revealed a significant negative correlation between cold tolerance and ploidy. On the basis of the morphological and physiological indices, optimal stepwise regression equations that can be used for the selection of cold‐tolerant S. spontaneum resources were established.
  • The S. spontaneum clones with low ploidy are more cold tolerant than those with high ploidy. Clones 12‐37, 13‐10 and 12‐23 are strongly cold‐tolerant germplasm resources, which suggests these germplasm sources have high potential for use in breeding cold‐tolerant sugarcane.
  相似文献   

11.
Identification and cloning of cold‐tolerant genes that can stably express under different cold environments are crucial for molecular rice breeding for cold tolerance. In the previous study, we identified a cold‐tolerant QTL at the seedling stage, qCTS‐9 which could be detected under different cold environments using a recombinant inbred line (RIL) population derived from a cold‐tolerant variety Lijiangxintuanheigu (LTH) and a cold‐sensitive variety Shanhuangzhan 2 (SHZ‐2). In this study, eight candidate genes within the qCTS‐9 interval were identified through integrated analysis of QTL mapping with genomewide differential expression profiling of LTH. The qRT‐PCR assay showed that only Os09g0410300 exhibited different expression patterns between LTH and SHZ‐2 during cold stress, and significantly positive correlation was found between cold induction of Os09g0410300 and seedling cold tolerance in the RI lines. Five SNPs and one InDel in the promoters of Os09g0410300 were detected between LTH and SHZ‐2, and the InDel marker ID410300 designed based on the insertion–deletion polymorphism in the promoter was significantly associated with seedling cold tolerance in RIL population. Further, Os09g0410300 over‐expression plants exhibited enhanced cold tolerance at the seedling stage compared with the wild‐type plants. Thus, our results suggest that Os09g0410300 is the functional gene underlying qCTS‐9. To our knowledge, it is a novel gene contributed to enhance cold tolerance at the seedling stage in rice. Identification of the functional gene underlying qCTS‐9 and development of the gene‐specific marker will facilitate molecular breeding for cold tolerance at the seedling stage in rice through transgenic approach and marker‐assisted selection (MAS).  相似文献   

12.
Cold resistance in Antarctic angiosperms   总被引:9,自引:0,他引:9  
Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) are the only two vascular plants that have colonized the Maritime Antarctic. The primary purpose of the present work was to determine cold resistance mechanisms in these two Antarctic plants. This was achieved by comparing thermal properties of leaves and the lethal freezing temperature to 50% of the tissue (LT50). The grass D. antarctica was able to tolerate freezing to a lower temperature than C. quitensis. The main freezing resistance mechanism for C. quitensis is supercooling. Thus, the grass is mainly a freezing‐tolerant species, while C. quitensis avoids freezing. D. antarctica cold acclimated; thus, reducing its LT50. C. quitensis showed little cold‐acclimation capacity. Because day length is highly variable in the Antarctic, the effect of day length on freezing tolerance, growth, various soluble carbohydrates, starch, and proline contents in leaves of D. antarctica growing in the laboratory under cold‐acclimation conditions was studied. During the cold‐acclimation treatment, the LT50 was lowered more effectively under long day (21/3 h light/dark) and medium day (16/8) light periods than under a short day period (8/16). The longer the day length treatment, the faster the growth rate for both acclimated and non‐acclimated plants. Similarly, the longer the day treatment during cold acclimation, the higher the sucrose content (up to 7‐fold with respect to non‐acclimated control values). Oligo and polyfructans accumulated significantly during cold acclimation only with the medium day length treatment. Oligofructans accounted for more than 80% of total fructans. The degrees of polymerization were mostly between 3 and 10. C. quitensis under cold acclimation accumulated a similar amount of sucrose than D. antarctica, but no fructans were detected. The suggestion that survival of Antarctic plants in the Antarctic could be at least partially explained by accumulation of these substances is discussed.  相似文献   

13.
  • Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses.
  • In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer.
  • We identified 161 potential miRNAs representing 42 families, including monocot/tissue‐specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars.
  • Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT‐PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA–mRNA target pairing using RNA ligase‐mediated 5′ Rapid Amplification of cDNA Ends (5′RLM‐RACE) PCR.
  相似文献   

14.
15.
16.
The current study analyses few important biochemical parameters and microRNA expression in two closely related species (wild but tolerant Ipomoea campanulata L. and cultivated but sensitive Jacquemontia pentantha Jacq.G.Don) exposed to water deficit conditions naturally occurring in the field. Under soil water deficit, both the species showed reduction in their leaf area and SLA as compared to well-watered condition. A greater decrease in chlorophyll was noticed in J. pentantha (~50 %) as compared to I. campanulata (20 %) under stress. By contrast, anthocyanin and MDA accumulation was greater in J. pentantha as compared to I. campanulata. Multiple isoforms of superoxide dismutases (SODs) with differing activities were observed under stress in these two plant species. CuZnSOD isoforms showed comparatively higher induction (~10–40 %) in I. campanulata than J. pentantha. MicroRNAs, miR398, miR319, miR395 miR172, and miR408 showed opposing expression under water deficit in these two plant species. Expression of miR156, miR168, miR171, miR172, miR393, miR319, miR396, miR397 and miR408 from either I. campanulata or J. pentantha or both demonstrated opposite pattern of expression to that of drought stressed Arabidopsis. The better tolerance of the wild species (I. campanulata) to water deficit could be attributed to lesser variations in chlorophyll and anthocyanin levels; and relatively higher levels of SODs than J. pentantha. miRNA expression was different in I. campanulata than J. pentantha.  相似文献   

17.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

18.
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.  相似文献   

19.
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool‐season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri‐miR393a (Osa‐miR393a). We found that Osa‐miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat‐shock protein in comparison with wild‐type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.  相似文献   

20.
MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, OsaMIR319a and OsaMIR319b. Here, we report an expression pattern analysis and a functional characterization of the two OsaMIR319 genes in rice. We found that overexpressing OsaMIR319a and OsaMIR319b in rice both resulted in wider leaf blades. Leaves of osa‐miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa‐miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, OsaMIR319a and OsaMIR319b were down‐regulated while the expression of miR319‐targeted genes was induced. Furthermore, genetically down‐regulating the expression of either of the two miR319‐targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号