共查询到20条相似文献,搜索用时 15 毫秒
1.
Inherited genetic variation influencing leukocyte telomere length provides a natural experiment for testing associations with health outcomes, more robust to confounding and reverse causation than observational studies. We tested associations between genetically determined telomere length and aging‐related health outcomes in a large European ancestry older cohort. Data were from n = 379,758 UK Biobank participants aged 40–70, followed up for mean of 7.5 years (n = 261,837 participants aged 60 and older by end of follow‐up). Thirteen variants strongly associated with longer telomere length in peripheral white blood cells were analyzed using Mendelian randomization methods with Egger plots to assess pleiotropy. Variants in TERC, TERT, NAF1, OBFC1, and RTEL1 were included, and estimates were per 250 base pairs increase in telomere length, approximately equivalent to the average change over a decade in the general white population. We highlighted associations with false discovery rate‐adjusted p‐values smaller than .05. Genetically determined longer telomere length was associated with lowered risk of coronary heart disease (CHD; OR = 0.95, 95% CI: 0.92–0.98) but raised risk of cancer (OR = 1.11, 95% CI: 1.06–1.16). Little evidence for associations were found with parental lifespan, centenarian status of parents, cognitive function, grip strength, sarcopenia, or falls. The results for those aged 60 and older were similar in younger or all participants. Genetically determined telomere length was associated with increased risk of cancer and reduced risk of CHD but little change in other age‐related health outcomes. Telomere lengthening may offer little gain in later‐life health status and face increasing cancer risks. 相似文献
2.
Cellular senescence is a state of irreversible cell cycle arrest induced by different types of cellular stresses. The field of senescence has made significant advances in the understanding of many of the mechanisms governing this phenomenon; however, a universal biomarker that unambiguously distinguishes senescent from proliferating cells has not been found. In this issue of Aging Cell, Evangelou and colleagues developed a sensitive method for identification of senescent cells in different types of biological material based on the detection of lipofuscin using an analogue of Sudan Black B (SBB) histochemical dye coupled with biotin, which they named GL13. The authors propose that this method is more sensitive and versatile than using SBB alone. Lipofuscin, a nondegradable oxidation product of lipids, proteins and metals, is found in senescent cells. Detection of lipofuscin using GL13 staining may be a more feasible method than others currently used for identification of senescent cells both in cell culture and tissues. 相似文献
3.
4.
Yao Dang Yongpan An Jinzhao He Boyue Huang Jie Zhu Miaomiao Gao Shun Zhang Xin Wang Baoxue Yang Zhengwei Xie 《Aging cell》2020,19(1)
Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti‐aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence‐associated β‐galactosidase (SA‐β‐gal)‐positive cell rates of late PD cells grown in the BBR‐containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2‐M phase. Most importantly, BBR extended the lifespan of chemotherapy‐treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti‐aging medicine. 相似文献
5.
Amélie Massemin Delphine Goehrig Jean-Michel Flaman Sara Jaber Audrey Griveau Sophia Djebali Elisabeth Marcos Léa Payen Jacqueline Marvel Romain Parent Serge Adnot Philippe Bertolino Jennifer Rieusset Antonin Tortereau David Vindrieux David Bernard 《Aging cell》2023,22(11):e13971
Cellular senescence is induced by many stresses including telomere shortening, DNA damage, oxidative, or metabolic stresses. Senescent cells are stably cell cycle arrested and they secrete many factors including cytokines and chemokines. Accumulation of senescent cells promotes many age-related alterations and diseases. In this study, we investigated the role of the pro-senescent phospholipase A2 receptor 1 (PLA2R1) in regulating some age-related alterations in old mice and in mice subjected to a Western diet, whereas aged wild-type mice displayed a decreased ability to regulate their glycemia during glucose and insulin tolerance tests, aged Pla2r1 knockout (KO) mice efficiently regulated their glycemia and displayed fewer signs of aging. Loss of Pla2r1 was also found protective against the deleterious effects of a Western diet. Moreover, these Pla2r1 KO mice were partially protected from diet-induced senescent cell accumulation, steatosis, and fibrosis. Together these results support that Pla2r1 drives several age-related alterations, especially in the liver, arising during aging or through a Western diet. 相似文献
6.
Gretchen H. Stein Judy A. St. Clair 《In vitro cellular & developmental biology. Plant》1988,24(5):381-387
Summary Human microvascular endothelial cells (HMVEC) from adult adipose tissue were cultured in MCDB 131 medium supplemented with
10% fetal bovine serum. Under these conditions, HMVEC from seven different donors had finite proliferative life spans ranging
from 14.5 to 23.5 population doublings (PD), with a mean life span of 19 PD. Addition of 10% conditioned medium from activated
human leukocyte cultures (BM Condimed?) extended the life span of HMVEC to 31 to 41 PD, with a mean life span of 37 PD. At the end of lifespan, HMVEC cultures both
with and without BM Condimed had very low labeling indices (0 to 5% [3H]thymidine labeled nuclei) and consisted of enlarged cells. However, the morphologies of the two types of HMVEC cultures
were very different. Untreated HMVEC were polygonal endothelial cells that formed cobblestonelike monolayers with no cell
overlapping. In contrast, BM Condimed-treated HMVEC were more elongated, less regularly shaped cells that were not strictly
inhibited from overlapping. When old, these cells accumulated numerous vacuoles. The BM Condimed-treated HMVEC expressed Factor
VIII antigen, which confirms their identity as endothelial cells. These cells reverted rapidly to the polygonal morphology
of untreated HMVEC when they were removed from BM Condimed. Likewise, their proliferative capacity was not extended further
once BM condimed was removed. These results suggest that HMVEC can exist in two distinct morphologic states in which the cells
have different finite proliferative life spans.
This work was supported by grants AG00947 and AG04811 from the National Institute on Aging, Bethesda, MD. 相似文献
7.
Mariëtte E. C. Waaijer David Goldeck David A. Gunn Diana van Heemst Rudi G. J. Westendorp Graham Pawelec Andrea B. Maier 《Aging cell》2019,18(4)
With advancing age, many organs exhibit functional deterioration. The age‐associated accumulation of senescent cells is believed to represent one factor contributing to this phenomenon. While senescent cells are found in several different organ systems, it is not known whether they arise independently in each organ system or whether their prevalence within an individual reflects that individual's intrinsic aging process. To address this question, we studied senescence in two different organ systems in humans, namely skin and T cells in 80 middle‐aged and older individuals from the Leiden Longevity Study. Epidermal p16INK4a positivity was associated with neither CD4+ nor CD8+ T‐cell immunosenescence phenotype composites (i.e., end‐stage differentiated/senescent T cells, including CD45RA+CCR7‐CD28‐CD27‐CD57+KLRG1+ T cells). Dermal p16INK4a positivity was significantly associated with the CD4+, but not with the CD8+ immunosenescence composite. We therefore conclude that there is limited evidence for a link between skin senescence and immunosenescence within individuals. 相似文献
8.
Kreiling JA Tamamori-Adachi M Sexton AN Jeyapalan JC Munoz-Najar U Peterson AL Manivannan J Rogers ES Pchelintsev NA Adams PD Sedivy JM 《Aging cell》2011,10(2):292-304
Chromatin is highly dynamic and subject to extensive remodeling under many physiologic conditions. Changes in chromatin that occur during the aging process are poorly documented and understood in higher organisms, such as mammals. We developed an immunofluorescence assay to quantitatively detect, at the single cell level, changes in the nuclear content of chromatin-associated proteins. We found increased levels of the heterochromatin-associated proteins histone macro H2A (mH2A) and heterochromatin protein 1 beta (HP1β) in human fibroblasts during replicative senescence in culture, and for the first time, an age-associated increase in these heterochromatin marks in several tissues of mice and primates. Mouse lung was characterized by monophasic mH2A expression histograms at both ages, and an increase in mean staining intensity at old age. In the mouse liver, we observed increased age-associated localization of mH2A to regions of pericentromeric heterochromatin. In the skeletal muscle, we found two populations of cells with either low or high mH2A levels. This pattern of expression was similar in mouse and baboon, and showed a clear increase in the proportion of nuclei with high mH2A levels in older animals. The frequencies of cells displaying evidence of increased heterochromatinization are too high to be readily accounted for by replicative or oncogene-induced cellular senescence, and are prominently found in terminally differentiated, postmitotic tissues that are not conventionally thought to be susceptible to senescence. Our findings distinguish specific chromatin states in individual cells of mammalian tissues, and provide a foundation to investigate further the progressive epigenetic changes that occur during aging. 相似文献
9.
Yueying Zhou Iman M. A. AlNaggar PoJung Chen Nathan S. Gasek Ke Wang Shivam Mehta George A. Kuchel Sumit Yadav Ming Xu 《Aging cell》2021,20(7)
Aging is one of the major risk factors for degenerative joint disorders, including those involving the temporomandibular joint (TMJ). TMJ degeneration occurs primarily in the population over 65, significantly increasing the risk of joint discomfort, restricted joint mobility, and reduced quality of life. Unfortunately, there is currently no effective mechanism‐based treatment available in the clinic to alleviate TMJ degeneration with aging. We now demonstrate that intermittent administration of senolytics, drugs which can selectively clear senescent cells, preserved mandibular condylar cartilage thickness, improved subchondral bone volume and turnover, and reduced Osteoarthritis Research Society International (OARSI) histopathological score in both 23‐ to 24‐month‐old male and female mice. Senolytics had little effect on 4 months old young mice, indicating age‐specific benefits. Our study provides proof‐of‐concept evidence that age‐related TMJ degeneration can be alleviated by pharmaceutical intervention targeting cellular senescence. Since the senolytics used in this study have been proven relatively safe in recent human studies, our findings may help justify future clinical trials addressing TMJ degeneration in old age. 相似文献
10.
11.
12.
Christopher D. Wiley James M. Flynn Christapher Morrissey Ronald Lebofsky Joe Shuga Xiao Dong Marc A. Unger Jan Vijg Simon Melov Judith Campisi 《Aging cell》2017,16(5):1043-1050
Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single‐cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell‐to‐cell variability resulted in a loss of correlation among the expression of several senescence‐associated genes. Many genes encoding senescence‐associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. 相似文献
13.
14.
Shruthi Hamsanathan Tamil Anthonymuthu Denise Prosser Anna Lokshin Susan L. Greenspan Neil M. Resnick Subashan Perera Satoshi Okawa Giri Narasimhan Aditi U. Gurkar 《Aging cell》2024,23(4):e14104
Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, β-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, β-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans. 相似文献
15.
16.
John M. Sedivy Jill A. Kreiling Nicola Neretti Marco De Cecco Steven W. Criscione Jeffrey W. Hofmann Xiaoai Zhao Takahiro Ito Abigail L. Peterson 《BioEssays : news and reviews in molecular, cellular and developmental biology》2013,35(12):1035-1043
Here we present and develop the hypothesis that the derepression of endogenous retrotransposable elements (RTEs) – “genomic parasites” – is an important and hitherto under‐unexplored molecular aging process that can potentially occur in most tissues. We further envision that the activation and continued presence of retrotransposition contribute to age‐associated tissue degeneration and pathology. Chromatin is a complex and dynamic structure that needs to be maintained in a functional state throughout our lifetime. Studies of diverse species have revealed that chromatin undergoes extensive rearrangements during aging. Cellular senescence, an important component of mammalian aging, has recently been associated with decreased heterochromatinization of normally silenced regions of the genome. These changes lead to the expression of RTEs, culminating in their transposition. RTEs are common in all kingdoms of life, and comprise close to 50% of mammalian genomes. They are tightly controlled, as their activity is highly destabilizing and mutagenic to their resident genomes. 相似文献
17.
Rohit Sharma 《Cell biochemistry and function》2024,42(2):e3970
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies. 相似文献
18.
Nadejda Lopatina Joyce F Haskell Lucy G Andrews Joseph C Poole Sabita Saldanha Trygve Tollefsbol 《Journal of cellular biochemistry》2002,84(2):324-334
Genomic methylation, which influences many cellular processes such as gene expression and chromatin organization, generally declines with cellular senescence although some genes undergo paradoxical hypermethylation during cellular aging and immortalization. To explore potential mechanisms for this process, we analyzed the methylating activity of three DNA methyltransferases (Dnmts) in aging and immortalized WI-38 fibroblasts. Overall maintenance methylating activity by the Dnmts greatly decreased during cellular senescence. In immortalized WI-38 cells, maintenance methylating activity was similar to that of normal young cells. Combined de novo methylation activity of the Dnmts initially decreased but later increased as WI-38 cells aged and was strikingly elevated in immortalized cells. To further elucidate the mechanisms for changes in DNA methylation in aging and immortalized cells, the individual Dnmts were separated and individually assessed for maintenance and de novo methylating activity. We resolved three Dnmt fractions, one of which was the major maintenance methyltransferase, Dnmt1, which declined steadily in activity with cellular senescence and immortalization. However, a more basic Dnmt, which has significant de novo methylating activity, increased markedly in activity in aging and immortalized cells. We have identified this methyltransferase as Dnmt3b which has an important role in neoplastic transformation but its role in cellular senescence and immortalization has not previously been reported. An acidic Dnmt we isolated also had increased de novo methylating activity in senescent and immortalized WI-38 cells. These studies indicate that reduced genome-wide methylation in aging cells may be attributed to attenuated Dnmt1 activity but that regional or gene-localized hypermethylation in aging and immortalized cells may be linked to increased de novo methylation by Dnmts other than the maintenance methyltransferase. 相似文献
19.
The idea that senescent cells are causally involved in aging has gained strong support from findings that the removal of such cells alleviates many age‐related diseases and extends the life span of mice. While efforts proceed to make therapeutic use of such discoveries, it is important to ask what evolutionary forces might have been behind the emergence of cellular senescence, in order better to understand the biology that we might seek to alter. Cellular senescence is often regarded as an anti‐cancer mechanism, since it limits the division potential of cells. However, many studies have shown that senescent cells often also have carcinogenic properties. This is difficult to reconcile with the simple idea of an anti‐cancer mechanism. Furthermore, other studies have shown that cellular senescence is involved in wound healing and tissue repair. Here, we bring these findings and ideas together and discuss the possibility that these functions might be the main reason for the evolution of cellular senescence. Furthermore, we discuss the idea that senescent cells might accumulate with age because the immune system had to strike a balance between false negatives (overlooking some senescent cells) and false positives (destroying healthy body cells). 相似文献
20.
Hilary Ireland Max H.P. Gay Helen Baldomero Barbara De Angelis Hossein Baharvand Mark W. Lowdell Jakob Passweg Ivan Martin 《Cytotherapy》2018,20(1):1-20